184

Haoiitnicms npozpamnozo 3abe3neyenns

UDC 004.415.5

A. ANDRASHOV, A. GORDEYEYV, V. KHARCHENKO, V. SKLYAR

National Aerospace University Named After M.E. Zhukovsky, Ukraine

THE STATIC ANALYSIS OF A PROGRAM CODE PROCEDURE
BASED ON METRICS PROFILING

The static analysis of a program code procedure is developed. The analysis and classification of software quality
estimation metrics is conducted. For a quantitative estimation of a program code quality, generic metrics’ index
is proposed. The tool of static analysis process support is developed.

software quality assessment, metrics, static analysis, tool

Introduction

With increase in demand of the software using, the
risks connected with refusals and failures which reason
are defects of the software increases. Insufficient soft-
ware quality, as a rule, is consequence of insufficient
quality of the processes of its development, testing and
verification. This fact causes an urgency of the scientific
researches, devoted to development and improvement of
the software quality estimation methods.

Software quality, as a rule, is defined by the quantity
of residual defects in it. One of the reasons of defects
presence is insufficient quality of a program code, in
particular, the complexity of topology (control flow
graph) and not standardized programming style [1].

As the analysis result of existing static analysis meth-
ods and tools, following lacks have been certain: firstly,
heterogeneity and absence of metrics classification; sec-
ondly, high cost of the program code static analysis tools;
thirdly, existing tools are an integral part of software
products development platforms and, as a rule, cannot
functionate independently (Cantata ++, AdaTEST).

The static analysis methods are applied to an estima-
tion of a program code quality. The static analysis is a
process of the software analysis without its direct per-
formance [2]. Existing static analysis methods and tool
include metrics. The metric is a method of estimation
and a scale of measurement [3]. For today exists more
than fifty metrics of a code quality estimation, but the
majority of them are not a part of the software static

analysis tools (Together, Testbed, etc.).

In this connection the purpose of given article is the
static analysis of a program code procedure and tool of

the static analysis process support development.

1. The static analysis
of a program code procedure

Procedure structure. Suggested procedure (fig. 1) is
intended for software quality estimation by the program
code static analysis. The procedure is based on «To-
gether» tool metrics and the metrics which have not
entered in «Together» interconnecting. On a first step of
metrics interconnecting, it has been decided to generate
the generic classification (profile). For this purpose the
«Together» metrics and metrics not entering in this tool
taxonomy has been constructed. Additive convolution
can be applied to metrics calculation.

The «Together» tool metrics analysis. The «To-
gether» tool is applied to support software designing
and quality estimation (program code audit) [4]. Given
tool is developed by «Borland» company. The «To-
gether» contains set of metrics which are focused on a
program’s code static estimation.

The metrics used in «Together», are the basic means
by using which the project manager and the architect can
keep watching on development of the program environ-
ment. To estimate software quality, using «Together»
tool, one have to define a metrics profile, as there is some
overlapping between metrics presents. For example, in
one metrics set is not necessarily should be a cyclomatic

complexity and a maximum size of operation metrics.

© A. Andrashov, A. Gordeyev, V. Kharchenko, V. Sklyar

PAIOEJIEKTPOHHI I KOMIT'FOTEPHI CUCTEMMU, 2007, Ne 8 (27)

Haoiitnicms npozpamnozo 3abe3neyenns 185

The «Together» tool
metrics

The metrics which are
not supported
by«Together»

classification
generation

v

The generic metrics”
index caleulation

I

Software quality report

Fig. 1.The static analysis procedure stages

«Together» metrics allow conducting the quantita-

tive analysis of an initial program code by following

criteria: basic, complexity, coupling, encapsulation,
inheritance, on the basis of a maximum, polymorphism,
ratio, audit violations.

The «Together» tool metrics classification (fig. 2)
based on conducted analysis has been offered.

The analysis of additional software quality esti-
mation metrics. For generic metrics profile nomencla-
ture expansion the analysis of metrics which are actively
used in the modern industry of program engineering has
been made. On the grounds of the analysis a number of
metrics which application allows sufficiently estimate
characteristics of software quality has been allocated [5,
6]. The decision to classify all set of metrics (fig. 3) was

accepted.

The «Together tool metrics

|

Complexity metrics

Objects interactions metrics
(basing on a code structure)

Volumetric or quantitative
melrics

Metrics of stylistics and
understandability of the
program

\

v

Y

4

1. Attribute Complexity (AC)

2. Cyclomatic Complexity (CC)
3. Weighted Methods Per Class 1
(WMPC 1)

4, Weighted Methods Per Class 2
(WMPC 2)

5. Maximum Size Of Operation

(MS0O)

1, Data Abstraction Coupling (DAC)

2, Attribute Hiding Factor (AHF)

3. Method Hiding Factor (MIIF)

4. Attribute Inheritance Factor (AIF)

5. Method Inheritance Factor (MIF)

6. Depth Of Inheritance Hierarchy (DOIH)
7. Number Of Child Classes (NOCC)

8. Number Of Added Methods (NOAM)

9. Number Of Overridden Methods (NOOM)
10. Polymorphism Factor (PF)

11. Percentage of Internal Members (PlntM)
12, Percentage of Private Members (PPrivM)
13. Percentage of Protected Internal Members

(PPIntM)
14. Percentage of Protected Members (PProtM)
15. Percentage of Public Members (PPubM)

1. Lines Of Code (LOC)

2. Number Of Attributes (NOA)
3. Number Of Classes (NOC)

4. Number Of Constructors
{NOCON)

5. Number Of Classes (NOC)

6. Number Of Operations (NOO)
7. Maximum Number OF
Parameters (MNOP)

8. Maximum Size Of Operation
{MS0O0)

1. Comment Ratio (CR)

2. True Comment Ratio (TCR)
3. Requirements Traceability
(vRT)

4. Stereotypes Of a Diagram
Subtype (vSODS)

5. Total Audit Violations (TAV)

Fig. 2. The «Together» tool metrics classification

Let us consider the metrics classification attributes:

1) the attribute of the testing analysis is based on
two directions of testing the static and dynamic

analysis (the metrics of the dynamic analysis are not

considered);

2) the attribute of a life cycle stage is divided into

the following: metrics witch are applied at a stage of

coding and designing;

3) the attribute of complexity level is based on
complexity of metrics calculation and contents. Com-
plex metrics can include a number of the simple one;

4) under the strategy attribute it is meant two strate-
gies: a white and a black box. L.e. metrics which work
with use of internal software structure information and
metrics which use the information which is not basing

on software structure;.

186

Haoiitnicms npozpamnozo 3abe3neyenns

‘ Metrics

‘ Testing analysis | v
v ‘ Dynamic ‘
‘ Static ‘
. + |
‘ Life cycle stages | v
v ‘ Design stage ‘
‘ Codirf stage ‘
Stability of a
‘ Complexity level i v [| module lane
v
Sample
| 7 | The set of Extended
‘ cyclomatic
‘ Strategy (white, black box) | v measures | complexity of a

‘ Quantitative ‘ Kocol’s module plane
‘ Structure based ‘ complex
2 Halstead’ measure
‘ Flow ype ‘ metrics L McClure’s
* .
‘ Data flow ‘ ‘ Topological ‘
| | Henry’s and
Kaffur's Interval | —
Ovideo's Harrison’s ‘
, — Canton’s Chen’s Hansen’s
—
Tay’s
Polénco'\rlmal f Nodal Schandevid’s Woodward’s
<1 Spen’s

Fig. 3. The additional metrics classification

5) the attribute of a stream means itself the division
of metrics on topological and the metrics of a dataflow.
The basis of topological metrics is made by software
structure. And a basis of the dataflow metrics is defini-
tion of software data correctness.

The presented classification included twenty metrics
of software quality estimation. Most of the metrics has
the full description; however, with regard to some met-
rics there is no information about their primitives.

The generic metrics profile. On the basis of the
conducted analysis and classification of software quality
estimation metrics has been drawn a conclusion, that for
an all-round estimation of software quality and reliabil-
ity it is necessary to generate the generic metrics profile
(fig. 4). Which will includes the «Together» tool metrics
and metrics not entering into it. The basic lack of «To-
gether» tool metrics is absence of a full set of the soft-
ware complexity metrics.

The generic metrics profile constitutes by it self the
facet structure which is formed on the basis of combin-

ing of the classification scheme of «Together» tool met-

rics (fig. 2), transformed into facet structure and the
classification scheme of metrics, not supported by «To-

gether» (fig. 3).

Metrics which are not supported
by «Together»

0 ® ©

The «Togethern tool metrics

OJOJO)
® O
®® G

®® ®
®® ®
®6® ®
OE @
®® ®
®® ®

Generic metrics profile

Fig. 4. The generic metrics’ profile forming principle

Haoiitnicms npozpamnozo 3abe3neyenns

187

It is necessary to note, that at formation of the ge-
neric metrics profile there were no intersections i.e. met-
rics were not duplicated.

The static analysis of a program code quality in-
dex. For a quantitative estimation of the static analysis
of a program code quality the following index has been
introduced:

The generic metrics’ index (GMI) which is calcu-

lated using the formula:
GM1:M1*K1+M2*K2+...+MN*KN,

where My — numerical metrics value, Ky — is weighting

factor which defines by the experts,

N
YK =1
i=1

The generic metrics’ index is used for a quantitative
assessment of metric program’s code estimation quality.
Due to weight factors, experts have an opportunity to
define the importance of each metric at the calculation

of an index as a whole.

2. Case study: tool «Togageks»

On the basis of static analysis procedure the tool for
static analysis of a program code process support has
been developed.

Current tool consists of the following (fig. 5) mod-
ules: «Together» module, carrying out the metrics cal-
culation for a program code static analysis; the «metrics
calculation» module is necessary for calculation the
metrics which are not supported by «Together» module;
the «index calculation» module is intended for a calcu-
lation of a program code quality estimation, entrance
data for which are the metrics values counted by «To-
gether» module and «metrics calculation» module; the
«metrics visualization» module is necessary for radial-
metric diagram (RMD) forming with the purpose of
visual display of metrics values.

The database represents the set of html files contain-
ing values of metrics calculations and estimation quality

indices.

«Index calculations

«Together» module
module

Data base
(html files)

«Metrics visualization»
module (RMD)

«Metrics calculationy
module

Fig. 5. The «Togageks» tool structure

The «Togageks» tool carries out following func-
tions:

— downloading «Together» html report file from
the data base;

— displaying of the given report at the program’s
form;

— primitive selection and calculation of metrics
which are not entering in «Together» tool;

— calculated metrics RMD visualization;

— program code estimation quality index calcula-
tion;

— saving metrics and index values into data base.

Program interface is represented as form with a metrics
list, downloading from «Together» html report file, metrics
visualization window of chosen by user metrics (fig. 6.).
There is an opportunity of changing the gradation scale of

numerical metrics values at displayed RDM.

g 1=
Ttem IAC AHFAFCC CR [DACDOIHILOC MHFMIFMNOPMSO!
I~ EForml ro r17 M o] mijrs? rz o
¥ BFoml 7 F3g Ci rif mieez Pz
™ B OpenLinksThread| ¥ 22 3 Mol F4 MR e r2 ¢
T EProgram [0 CiF 15| Co| MiF 18 ro O

F-H“ (= EerEEEET —

=

Form1
B Program
R OpenLinksThread

B
OpenFile Add custom Metrics

Fig. 6. The «Togageks» tool main form

188

Haoiitnicms npozpamnozo 3abe3neyenns

It is possible to choose a decomposition level of
metrics calculation and RMD displays (as for separate
classes and modules of tested software, as well for the
project as a whole).

The form on (fig.7.) is intended for input the metrics
which calculation is not supported by «Together» tool.

Metrics primitives are set in an obvious kind in Java-

script language.
i
— Metrics — Metnc parameters ;

Parameter narme

| "alue
McBey?

Cuistom metric

— Metric calculation result @
rezult = |?32,E

— Calculation algonthm [JawaScnpt) ;
function Calc [param1, paramz. p3, result)i

result = param1 * parame ;

Add/Save | Cancel |

Fig. 7. Metrics’ primitive input form

After the primitive assignment the metric value is to
be brought in the general table (fig.6.) with an opportu-
nity of the further visualization on RMD. When all the
metrics’ values are calculated, computing the static
analysis quality index. Further all the calculated informa-

tion in the form of the report is saving in the data base.

Conclusions

The analysis and classification of software quality
estimation metrics is conducted. The static analysis pro-
cedure, based on the generic metrics profile forming, is
introduced. The index of software estimation quality is
described. The tool of static analysis process support is

developed.

Proposed static analysis of a program code proce-
dure and static analysis process support tool might be
used at the software independent verification, expertise
and audit.

Further researches are advisably to aim at the devel-
opment of metrics’ profile forming procedure for spe-
cific projects.

The «Togageks» tool was used for safety assessment
of software of Ukrainian Nuclear Power Plants Instru-
mentation and Control System. This tool using permits
to find some incorrectness in program code that im-

proves quality and safety of critical software.

References

1. Liu K., Zhou S. Yang H., Quality Metrics of Ob-
ject Oriented Design for Software Development and Re-
development // Proceedings of the IEEE First Asia-
Pacific Conference on Quality Software, 2000.

B.B. Hanéxzoctb

cpencts. — M.: CUHET, 1998. — 232 c.

2. Jlunaes TIPOTPaMMHBIX
3. Kapwmaiixn 3., XeliBya Jl. beictpas u kauecTBeH-

Hasi pa3paboTKa MporpaMMHOro obecredeHus. — M.:

Hzparensckuii gom «Buibsamcey, 2003. — 391 c.

4. User Guide for Together ControlCenter™. — Bor-
land Software Corporation, 2004. — 922 p.

5. Yepnonoxkua C.K. Mepbl CIOXKHOCTH TIpoO-
rpamm (0030p) // CucremHass uHpopmartuka. Bpim. 5:
ApXUTEKTypa, (hopMalbHbBIE H IPOTPAMMHBIE MOJEIH. —
HoBocubupck: Hayka, 1997. — C. 188-227.

6. Uepnonoxxkun C.K. 3amaum aBTOMAaTH4eCKOTrO
MOCTPOCHHS TECTOB M cTaTUuecKuii aHaimu3 // [Iporpam-

mupoBanue. — Ne 2. —2001. — C. 35.

IHocmynuna 6 pedaxyuro 2.03.2007

Penenzent: j1-p TexH. Hayk, npod. b.M. Konopes, Ha-
LUOHAJIBHBIN A’POKOCMHUYECKUI YHUBEPCUTET
uM. H.E. XKykosckoro «XAW», XapbkoB.

