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In the paper it is shown that the acting (the operating) of left regular bands on some sets determines hierarchic 
structures particularly Paun’s systems and characterize some properties of these structures. 
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Introduction 

Graphs can  be defined as unary algebras of the form 

G = (X, s, t) with s, t : X → X being functions satisfying 

the conditions: 

s° s = s° t = s &; t° s = t° t = t. 

This definition leads to a presentation of Petri nets as 

„relational algebras” of the form (X, entry, exit) satisfy-

ing similar conditions [7] and may be generalized to 

Petri nets seen as „relational graphs over independent 

systems” in [8]. In this paper it is shown that the method 

used in [7] can also be used to a characterization of hi-

erarchical systems and data bases with a kind of refine-

ment of attributes.  

1. Preliminaries 

1.1. Notation. In the paper the standard mathemati-

cal notation is used. By a fix point of a function  

f : X → X we mean an element x ∈ X satisfying the con-

dition f(x) = x. fix(f) denotes the set of all fix points of f. 

The set of all functions from a set A to a set B will be 

denoted by [A→B] or BA. The composition of functions 

f : A → B and g : B → C will be denoted by fg or f °g. So 

we write fg(a) = g(f(a)) for a ∈ A. If A = B than we write 

simple Funct(A) instead of [A→A]. For any unexplained 

notions and notation the reader is referred to [10]. 

1.2. Graphs and hypergraphs. The “standard” 

presentation of directed (multi)graphs as set valued 

functors defined on the category  

 

 

may be generalized to the so called higher graphs be-

ing set valued functors defined on the category 

            X0
⎯⎯⎯ ⎯← }0,0{ ts

X1 ← ... ⎯⎯⎯⎯ ⎯← −=− }1,1{ ntns
Xn        (1) 

(in the above picture the identitity morphisms have been 

omitted). Such structures are closely related to the so 

called n-categories (see e.g. the web page on n-catego-

ries [12]). Higher hypergraphs may be seen as as set 

valued functors defined on the category 

X0 ⎯⎯← 0F X1 ⎯⎯← 1F X2 ⎯⎯← ... ⎯⎯ ⎯← −1nF Xn      (2) 

with F0, F1, ..., Fn-1 being arbitrary sets of morphisms.  

One sorted graphs may be seen as set valued func-

tors defined on the category whose underlying graph is 

given in the following figure 

 

and the composition of morphisms satisfies the condition 

t°  s = t° t = s  and  t° s = t° t = t. 

Such a graph is an algebra of the form (X, S) where S 

is a three element left zero monoid of functions defined on 

the set X (acting on the set X). The vertices of such graphs 

are the common fix-points of the operations s and t. Gen-

eralizing this notion we can define directed hypergraphs 
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as unary algebras of the form H = (X, ( δs)s∈S) satisfying 

the condition: for any x ∈X and any s, s’∈ S we have 

δ s( δs’(x)) = δs’(x). The elements of the set1  

V(H) = {x ∈ X: δs(x) = x} 

are called Vertices of H and those from the set A(H) = 

= X\V(H) hyperarrows of H. The set I is called the type 

of H2. Homomorphisms of hypergraphs are defined as 

the standard homomorphisms of algebras that means by 

a homomorphism from a hypergraph H = (X, ( δs)s∈S) 

into a hypergraph H’= (X’, (δ ’)s∈S) we understand any 

function f : X→X’ satisfying the condition  

δ s’(f (x)) = f (δ s(x))  

for any x∈X and s∈S. A hypergraph H = (X, (ss)s∈S) may 

be now seen as an action of a left zero semigroup, say 

S = (S, °), on the set X. Now one can define higher 

hypergraphs as sequences of the form 

X ⎯⎯← 0F X 1←⎯⎯F X ⎯⎯← … ⎯⎯ ⎯← −1nF X 

with F0, F1, ..., Fn-1 being arbitrary sets of morphisms 

satisfying the condition δs ° δ τ = δs for any I ≤ n – 1 

and any δs, δ t∈Fi. So, a higher hypergraph may be seen 

as a sequence of left zero semigroups acting on the same 

set X. For any category C, a C-hypergraph is a func-

tors defined on C. The object part of such a functor, let 

us call it Λ: C→ set is a constant function with a value 

being a fixed set, say X and for any objects 

a, b ∈ Objects(C) the set Mor(Λ(a), Λ(b)) being a left 

zero semigroup. If we treate C as a partial semigroup 

then C-hypergraphs are simply some special homomor-

phisms of semigroups. It can be shown that the codo-

mains of these homomorphisms are left regular semi-

groups. 

                                                           
1 Let us note that the condition δs(x)=x guarantees that for any s’∈S 
we also have δs'(x)=x which legalize the notation. 
2 In the case of general algebras it is better to define the type of an 
algebra as a sequence of operations (if the set of these operations is 
finite), a sequence of operators (operation symbols) or as an ordinal 
number (see e.g. [5]). In this case the type may be understood as a set, 
because all operations have the same arity and the index-function  

I ∋ i s∈operations_of_the_hypergraph  
suffices for the identification of operations in the considered 
hypergraphs. 

1.3. Bands. By a band it is meant any idempotent 

semigroup i.e. a semigroup in which every element sat-

isfies the equality xx = x that means every element of S 

is idempotent. Let us note the following simple fact. 

Proposition. A function f: X→X is idempotent iff 

fix(f) = f(X) iff f⊆ker(f). 

It is well known that every semigroup can be repre-

sented by a semigroup of functions of the form X→X for 

a given set X3. Let X be a given set. In what follows we 

consider bands of functions that means semigroups of 

the form B=(S, °) with S⊆(Funct(X) in which any ele-

ment (function) f satisfies the condition fix(f) = f(X) 

(equivalently f⊆ker(f). 

Proofs of the following propositions consist if sim-

ply calculations. 

Proposition. For any band of functions B = (S, °) 

and f,g∈S it holds f°g=f  iff  fix(f)⊆fix(g). 

Corollary. fix(f)=fix(g) iff  f°g=f & g°f=g. 

The relation ≺fix⊆Funct(X)2 given by the condition 

f ≺fix g ⇔ fix(f)=fix(g) is of course an equivalence in the 

set Funct(X).  

The equivalences classes of this relation will be 

called levels of B. Of course every such a level is 

uniquely determined by the corresponding set of fix-

points. In what follows the level determined by a set 

A⊆X will be denoted by level(A). The level determined 

by a set A⊆X will also be called the level of a function 

f: X→X for any function f with fix(f)=A. Let us recall 

that it is a set of functions level(A)⊆Funct(X). Let X be 

a fixed set and B=(S, °) with S⊆Funct(X) a band of 

functions. 

Proposition. For every subset A of the set X the level 

of A is a left zero subsemigroup of B. 

Proposition. Every subset of (the carrier of) a level is 

a subsemigroup of this level. 
                                                           
3 Perhaps the best well known such a representation is the 
representation of a semigroup as a semigroup of translations, that 
means mappings of the form Λa: X→X with Λa(x)=ax for a semigroup 
S=(X,  ⋅ )  and a fixed element a∈X. 
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2. Representation theorem 
It is well known (see e.g. [14], p.20, theorem II.1.6) 

that any left regular band B = (X, °) may be represented 

as the (unions of) a semilattices of left-zero semigroups. 

From the definition of higher hypergraph we obtain. 

Proposition. A pair (X, F) is a higher hypergraph iff 

(F, °) is a left regular semigroup of functions 

F⊆ [X→X] and F/commutativity 
4 is a chain. The „length” of 

this chain is the length of the higher hypergraph. 

3. Globularity 
By a globular set it is meant any higher graph 
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satisfying the condition: for any i≤n–1  

si° si-1 = ti ° si-1  &  ti° ti-1 = si° ti-1. 

This condition originates from the request that such 

a globular set should play the role of the underlying (n-) 

graph of an n-category, i.e. if the graphs 

0 11

0 1 1

0 1 1 2 1, , ...,
−

−

−
←⎯⎯ ←⎯⎯ ←⎯⎯⎯
←⎯⎯ ←⎯⎯ ←⎯⎯⎯

n

n

s ss

n n
t t t

X X X X X X  

are the underlying graphs of some categories C1, C2, ..., 

Cn-1 then the globular set may be seen as the „underly-

ing n-graph” of the n-category with „levels” C1, C2, ..., 

Cn-1. For more details the reader is referred to [1] and [2].  

Globularity has an interesting interpretation in data 

bases. Firstly, let us note that any table may be easily 

seen as a hypergraph with hyperarrows being (named) 

rows (records) of the table and incidence functions be-

ing single projections onto attributes (vertices are values 

of attributes). We can say that a table is a hypergraph 

with an additional partition of vertices into sets corre-

sponding to the columns of the table. In this sense one 

can call tables n-partite hypergraphs. We consider tables 

as Pawlak's information systems (see [13]), that means 

quadruples of the form5 

                                                           
4  Commutativity is the relation generated in F by the equality fg = gf. 
5 This is an nonessential modification of Pawlak’s definition of an 
information system. 

H=(Objects, Attributes, Values; Information), 

where Objects, Attributes and Values are sets and in-

formation is a function of the form 

Information: Objects× Attributes → Values. 

Let us consider a table 

attributes  
objects 

A1 A2 

O1 a11 a12 

O2 a21 a22 

… ... ... 
 

It may be seen as the information system 

H0 = (Objects0, Attributes0, Values0; Information0), 

where 

Information0: Objects0 × Attributes0 → Values0  

and 

Values0 = ∪
0

)(0
AttributesA

Avalues
∈

 

with Values0(A) being a set (of the values of the attrib-

ute A). Such a table gives a description of (elements of) 

the set Objects0 characterizing its elements by the rows 

of the table named in this context records. One assumes 

that (the values of) attributes are atomic and there exists 

no need to refine (decompose) them into „better known 

parts”. However this assumption may sometimes fail. In 

such a case we have to see (the values of) attributes as 

objects of another, in a sense „detailed”, information 

system. So, we obtain a new table 

New attributes  
 
values of the attributes Ai 

B1 B2 

a11 b11 b12 

a11 b21 b22 

a21 b31 b32 

a22 b41 b42 

… ... ... 
 
which leads to a new information system. Now, one 

may merge both systems and use it “depending on the 

user”. If there is a need for the information on the level 

determined by the first table (let us call it the zero-level 

table) then we use the function Information0 only and if 
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a “deeper” information is needed we offer a set of ta-

bles. In this set some tables may refine the other ones. If 

this refinement relation is a chain then we offer the user 

an n-hypergraph. The levels of this hypergraph are ex-

actly the information systems H0, H1, ... and the sets F0, 

F1, ... consist of “refining functions” assigning to values 

of attributes some records of a new data-base being their 

refinements 

01
01... HH FF ⎯⎯←⎯⎯← . 

The assumption that such a „refinement sequence” 

fit to any user is very optimistic. Normally any person 

has his own way of understanding of a notion (a value 

of an attribute). An important property of the “good-

ness” of such a refinement is the property that for any 

two persons, say P1 and P2 there exists a common re-

finement of a given table which may be understood by 

both P1 and P2. If we assume already such a preexisting 

refinement then we obtain the statement 

The refinement structure of a date base is a semilat-

tice6. 

The above interpretation of hypergraphs is explicit 

in this sense that any hypergraph may be seen as a (gen-

eralized) data base (table). The dual reasoning (which 

we omit here) leads to the notion of a database with the 

operation of generalization. 

Now, what are the elements of the semilattice men-

tioned above? They are of course the tables that means 

the hypergraphs being the corresponding Pawlak's sys-

tem. 

What does it mean that the refinement system of a 

data base (knowledge base) is globular? Let us consider 

a record α in a data base A with attributes A1, A2, A3, A4. 

The corresponding incidence functions are f1, f2, f3, f4 

 
A1 A2 A3 A4 α : 

f1(α) f2(α) f2(α) f2(α)

                                                           
6 This statement may be a bit too powerful. A table with “infinite 
rows” is useless. Similar, if an attribute is not defined on an object 
(e.g. the attribute “weight” of a song) then it may be very artifical to 
see such a table as a hypergraph. However we can simply consider 
finite semigroups of operations and introduce a special “bottom 
element”. 

 
Refining a area, say for example A1, by two func-

tions g1 and g2 we obtain different, more precise with 

different names, records say β1 and β2 

B1 B2 B3 β1 = g1(α):
h1(β1) h2(β1) h3(β1)

 
B1 B2 B3 β2 = g2(α):

h1(β2) h2(β2) h3(β2)
 

in a data base (table) B with attributes and 

h1, h2, h3: Objects(B) × {B1, B2, B3} → Values. 

The globularity of the refinement system says that 

hi(g1(α)) = hi(g2(α)) 

for any i≤3. In other words the records β1 and β2 may 

differ only in names, one can say they are isomorphic. 

Such a property may be important when considering 

knowledge bases in various expert systems where the 

problems connected with the identification of objects 

are of great importance. 

 

4. Hierarchical systems 

The above considerations can be easily transformed 

onto endomorphisms semigroup of any object. Let us 

consider such a semigroup of a semilattice with the unit 

and zero element, that means a triple of the form7 

IS = (X, ∪, 1, 0)  

with 1,0∈X being distinguished elements of X and ∪: 

X×X→X being an idempotent, assotiative and commuta-

tive binary operation in X satisfying the conditions 

X∪1 = 1∪X = X & X∪0 = 0∪X = 0.  

In other words we consider (hyper)graphs over inde-

pendence systems. In [8] it has been shown that graphs 

over such independence systems can be seen as Petri 

nets. Such a presentation of a Petri net is a graph over 

an independence system IS = (X, ∪, 1, 0). The Vertices 

of and the Arrows of this graph are (correspond to) 

                                                           
7 Such a monoid can be understand as a model of an independence 
system (see [8]), more precisely as the image of such a system by a 
lattice homomorphism transforming all dependent objects (usually 
sets) onto the zero of IS. IS is an abbreviation of Independence 
System. 
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situations and process in this net. The corresponding 

endomorphism semigroup of IS has two elements  

entry, exit: X→X (entry≠  1 ≠  exit)  

assigning to any process α of X its beginning (entry(α)) 

and end (exit(α)) situation. The fact that entry and exit 

are respected by the operation „∪”may be understand as 

a kind of safety of the process algebra of this net (see 

e.g. [11] or [7]). Replacing the endomorphism semi-

group ({entry, exit}, °) by an arbitrary left zero endo-

morphism band of BIS = (A,° ) of the independence sys-

tem IS we obtain the notion of generalized Petri nets 

(see [6]). Now hierarchic „generalized Petri nets” may 

be characterized by left regular bands of endomor-

phisms of such independence systems that means higher 

hypergraph. The idea is very simple. Let (X, F) be a 

higher hypergraph over an idependence system IS. Let  

IS1 = (X1, ∪,1, 0), IS2 = (X2, ∪,1, 0), ...,  

ISn = (X, ∪,1, 0)  

be a sequence of subsystems of IS = (X, ∪,1, 0). If every 

level iX
F  of F determined by the set Xi (i≤n) has ex-

actly two elements, say f and g then the pair NA= (X, f, 

g) is of course a Petri net. The places of this net are 

processes in the „next” nets – the levels determined by 

the sets of the form A\{a} (a∈A). More precisely such a 

„next” net has exactly the same places as NA\{a} except 

the element a which becomes a transition in the net 

NA\{a}. In the case of generalized nets is the reasoning 

similar. 

Concluding remarks 

Higher graphs are considered usually in connection 

with the higher categories mentioned in the Introduction. 

They have been introduced in 60-thies by Benabou [3]. 

Higher categories are intensively examined not only as 

interesting mathematical objects but also as a description 

tool for many objects considered e.g. in physics and 

computer sciences (see e.g. [4]). An excellent surrey of 

the theory and application of higher categories can be 

found on the web page [12]. Connections between left 

regular bands and higher graphs have been firstly de-

scribed probably by [9] who presented them in an inter-

esting philosophical context. Paun’s systems may be 

characterized in terms of left regular bands as higher hy-

pergraphs or dual by right regular bands as systems hier-

archies) of partitions. Paun’s systems may be models of 

many objects. Hieragchic systems and data bases are 

some of them.  

Hierarchical organized systems of areas (e.g. zones in 

the air or on the earth) may be seen as Paun’s systems 

(with additional adjancy-relation). So such systems may 

be described as some special left regular bands. In such a 

description we drop many information on regions; theirs 

location, their area, their shape and many other. However 

this abstraction allows to consider the essence of flying 

control; the relations between its elements. And this is 

exactly the point which is interestiong for a flight con-

troller. So the possibile application of the presented 

formalism is a model which is simpler than models us-

ing many dimensional object as representation of zones.  

One of the way of understanding the coherence of a 

data base is that any aggregation of such a base should 

be coherent.  

If one considers data bases as some sets of records 

the inconsistency involves concerns simply a single 

record and the data base may be “improved” by the de-

letion of this record (records if there are more such 

“failed” records). However there do exist “data bases”8 

in which some relations between records are of great 

importance. In such cases the improvement of the whole 

system may demand (request) the removal of a subsys-

tem generated by the failed records. The identification 

(“computation”) of such a failed subsystem is often a 

very difficult problem. The globularity of an n-

hypergraph corresponding to the semilattice of possible 

refinements of a data base offers quite a formal (practi-

cally syntactic) method of verifying the coherence of 

                                                           
8 I write here „data bases” in order to be coherent with the terminol-
ogy of Pawlak’s information systems and the language of the theory 
of the (classical relational) data bases. Systems “containig” relations 
between records are more similar to the so called “data mines” using 
by expert systems. 
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data bases. If the emilatice of refinements of a data 

base is not globular, then the data base is not coherent. 

This criterion may, of course, not be used also as a posi-

tive criterion of the coherence of a criterion. However 

globularity seems to be a good candidate for the first 

examination of the set (in fact the semilattice) of the 

refinements of a data base.  
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