УДК 615.471

$C.В. ШТЫ<math>K^1$, $A.И. КУЗИ<math>H^2$

 1 Харьковский национальный университет радиоэлектроники, Украина 2 ЗАО «Альтрон», Украина

СЛЕПОЕ РАЗДЕЛЕНИЕ СМОДЕЛИРОВАННЫХ СИГНАЛОВ ЭЛЕКТРОГАСТРОГРАММЫ И ЭЛЕКТРОЭНТЕРОГРАММЫ

Для получения сигналов электрической активности желудка и кишечника используется метод слепого разделения сигналов (СРС). Количество сигналов источников предполагается равным количеству пейсмейкеров в указанных отделах желудочно-кишечного тракта. Используемые смоделированные сигналы желудка и кишечника, максимально повторяют реальные сигналы внутриклеточных отведений соответствующих гладких мышц по форме, амплитуде, частоте. В смеси сигналов присутствуют модели электрокардиограммы и артефакта дыхания. Разделение выполнено алгоритмами СРС, выбранными по статистическим свойствам реальных разделяемых сигналов. Лучший алгоритм выбран по минимальному значению коэффициента отличия матрицы смешивания от матрицы разделения.

желудочно-кишечный тракт, электрическая активность, электрогастрограмма, электроэнтерограмма, слепое разделение сигналов, сигналы источников, сигналы отведений

Введение

При диагностике заболеваний желудочно-кишечного тракта (ЖКТ) в медицинской практике применяются инвазивные методы (сцинтиграфия, рентгенография). Электрогастрография и электроэнтерография, как неинвазивные методы, не находят должного использования из-за низкого отношения сигнал/шум, особенно в диапазоне частот 0,163 - 0,208 Гц, в котором перекрываются спектры сигналов электрической активности (ЭА) двенадцатиперстной кишки и артефакта дыхания (АД). При рассмотрении сигнала определенного органа ЖКТ, сигналы ЭА других органов ЖКТ рассматриваются как помехи.

1. Формулирование проблемы

После регистрации электрогастрограммы (ЭГГ) и электроэнтерограммы (ЭЭнГ) многоканальным электрогастроэнтерографом [1], с целью получения сигналов, характеризующих ЭА желудка и кишечника, предлагается использовать метод слепого разделения сигналов (СРС) [2], с помощью которого были выделены медленные волны (МВ) желудка из ЭГГ в [3].

Слепое разделение сигналов. Зарегистрированные сигналы ЭГГ и ЭЭнГ, можно представить выражением:

$$\mathbf{X} = \mathbf{A} \cdot \mathbf{S} + \mathbf{V} , \qquad (1)$$

где X — матрица сигналов отведений (CO); A — смешивающая матрица; S — матрица сигналов источников (СИ); V — матрица шума.

Необходимо на основании данных регистрации получить оценку СИ-матрицу ${\bf Y}$:

$$\mathbf{Y} = \mathbf{W} \cdot \mathbf{X} \,, \tag{2}$$

где W — матрица разделения.

Для сужения области решений на модель смешивания накладываются некоторые ограничения.

Например, если это алгоритмы JADE [4] и SEONS [5], то их базовые предположения состоят в том, что матрица разделения с полным столбцовым рангом. СИ пространственно не коррелированны с отличающимися автокорреляционными функциями, но представляют собой коррелированные во времени (цветные) стохастические сигналы с нулевым средним. СИ – это стационарные сигналы или сигналы второго рода не стационарности в смысле меняющейся во времени дисперсии. Аддитивный бе-

лый шум независим по отношению к СИ и может быть коррелирован в пространстве.

Для таких алгоритмов как FastICA [6], UNICA и ERICA [7], EASI [8], Flexible ICA [9], SIMBEC [10], ThinICA [11] предположения модели смешивания отличны. СО (m) – это линейная смесь СИ (n) при $m \ge n$. СИ стационарные статистически независимые негауссианы (один компонент, подлежащий выделению, может иметь гауссово распределение). Смешивающая матрица невырожденная с полным столбцовым рангом. Аддитивный гауссов шум незначителен или снижен к таковому посредством предварительной обработки.

Первым требованием при использовании метода СРС является превышение или равенство числа СО числу СИ. В отделах ЖКТ: желудок, тонкий кишечник и толстый кишечник существуют семь пейсмейкеров (рис. 1). Это пейсмейкер средней части тела желудка, на большой кривизне (под номером один на рис. 1), частота МВ составляет 0,033 – 0,067 Гц в норме. Второй – в двенадцатиперстной кишке, сразу за пилорусом (номер два), частота его МВ составляет 0,2 Гц. Третий пейсмейкер находится в тощей кишке (номер три) со средней частотой МВ 0,113 Гц. В толстом кишечнике есть четыре пейсмейкера: в слепой кишке (номер четыре), в области соединения слепой

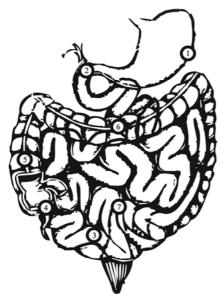


Рис. 1. Расположение пейсмейкеров ЖКТ

и восходящей ободочной кишки (номер пять), в поперечной ободочной кишке (номер шесть) и в сигмовидной ободочной (номер семь). Частота МВ каждого из четырех пейсмейкеров толстого кишечника находится в диапазоне 0,05 - 0,1Гц. Кроме ЭГГ и ЭЭнГ устройством регистрируются артефакты, которые так же рассматриваются как СИ. Это АД, частотный диапазон которого 0,163 - 0,283 Гц, электрокардиограммы (ЭКГ), максимум спектральной плотности которого обычно приходится на частоту около 0,7 Гц, белый шум устройства регистрации и окружающей среды, который в основном имеет гауссово распределение.

Целью данной работы является генерирование ЭГГ и ЭЭнГ, представляющих собой смесь СИ желудка и кишечника в количестве, соответствующем числу пейсмейкеров, имеющихся в отмеченных отделах ЖКТ. Так же в смеси должны быть АД, ЭКГ и белый гауссов шум, имеющие место в реальных ЭГГ и ЭЭнГ. Сгенерированные СО необходимо разделить с помощью метода СРС, реализованном в алгоритмах. Исходя из анализа результатов разделения алгоритмами JADE, SEONS, FastICA, UNICA и ERICA, EASI, Flexible ICA, SIMBEC, ThinICA необходимо выбрать наилучший алгоритм с перспективой дальнейшего использования при обработке реальных сигналов ЭГГ и ЭЭнГ.

2. Решение проблемы

Пусть имеются девять СИ, из которых семь первых сигналов представляют собой смоделированные сигналы электрической активности (МВ и потенциалы действия) желудка и определенных участков тонкого и толстого кишечника при внутриклеточных отведениях (рис. 1).

Сигналы внутриклеточных отведений выбраны, так как внутриклеточная ЭА гладких мышц ЖКТ и сигналы ЭГГ и ЭЭнГ [1] регистрируются при монополярных отведениях. Восьмой и девятый сигналы — это ЭКГ и АД соответственно.

Эти сигналы, смешанные посредством случайной матрицы \mathbf{A} (табл. 1) и просуммированные с гауссовым шумом согласно выражению (1), приведены на рис. 2.

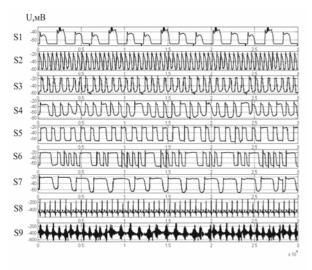


Рис. 2. СИ

Таблица 1

Значения элементов матрицы А

0,93	0,84	0,42	0,14	0,84	0,29	0,47	0,35	0,37
0,01	0,77	0,26	0,51	0,86	0,04	0,48	0,39	0,15
0,89	0,11	0,57	0,92	0,28	0,52	0,23	0,11	0,29
0,09	0,47	0,65	0,51	0,18	0,78	0,94	0,33	0,24
0,76	0,59	0,77	0,92	0,05	0,90	0,29	0,43	0,94
0,99	0,88	0,19	0,19	0,31	0,81	0,78	0,84	0,68
0,89	0,41	0,01	0,47	0,96	0,13	0,61	0,63	0,82
0,72	0,51	0,56	0,30	0,99	0,13	0,57	0,07	0,28
0,87	0,42	0,38	0,44	0,94	0,36	0,44	0,67	0,69
0,41	0,03	0,69	0,68	0,46	0,44	0,62	0,08	0,76

Для сравнения качества разделения сигналов используется коэффициент отличия матрицы смешивания от матрицы разделения (КОМСР) d [12]:

$$d = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{|p_{ij}|}{\max_{k} |p_{ik}|} - 1 \right) + \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \frac{|p_{ij}|}{\max_{k} |p_{kj}|} - 1 \right); (3)$$

где $p_{ii} = \mathbf{AW}$.

Эта мера не чувствительная к перестановке и масштабированию матриц. Равна нулю в случае полного совпадения элементов матриц.

В табл. 2 приведены значения КОМСР для алгоритмов СРС.

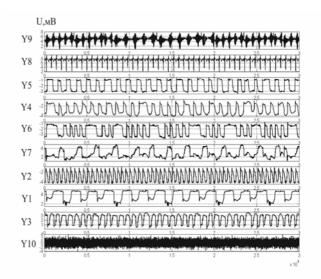


Рис. 3. СИ, оцененные алгоритмом JADE

Таблица 2 Значения КОМСР

Алгоритм	Значение d		
JADE	5,8420		
SEONS	40,206		
FastICA	8,2769		
UNICA	42,798		
ERICA	42,798		
EASI	45,113		
Flexible ICA	7,4584		
SIMBEC	28,778		
Thin ICA	43,071		

Как следует из табл. 2, самый лучший согласно КОМСР алгоритм JADE, графическое представление результата разделения которым приведено на рис. 3, где под десятым номером выделен гауссов шум.

Заключение

Основываясь на данных о форме, частотных и амплитудных соотношениях возможных СИ, соответствующих ЭА желудка и кишечника, артефактов и шума, сгенерированы смеси СИ.

Проведено разделение СИ методом слепого разделения сигналов.

Сравнивая значения КОМСР можно сделать вывод, что так как минимальные значения КОМСР у реализаций алгоритмов FastICA, JADE, FlexibleICA, то именно оценки СИ, полученные с помощью этих алгоритмов, максимально приближенные к исходным СИ, до смешивания.

Кроме этого, FlexibleICA имеет большую робастность к шуму по сравнению с FastICA, и меньшую в сравнении с JADE, но у FlexibleICA ниже скорость сходимости. JADE устойчив, т.е. КОМСР не меняется при повторном разделении в неизмененных начальных условий, а именно смешивающей матрицы и коэффициента масштабирования СИ, эти алгоритмы не эквивариантны.

Анализ результатов моделирования позволяет утверждать, что для получения реальных СИ желудка и кишечника из ЭГГ и ЭЭнГ, следует применить алгоритм JADE.

Литература

- 1. Кузин А.И., Штык С.В., Журавель В.В., Лагутин М.Ф. Система для регистрации электроэнтерограммы и электрогастрограммы // Прикладная радиоэлектроника. Х.: ХНУРЭ, 2007. Т. 6, № 4. С. 591-594.
- 2. Штык С.В., Лагутин М.Ф. Обработка электрогастроэнтерограммы методом слепого разделения сигналов // Новые решения в современных технологиях: Сборник молодых ученых. Х.: НТУ «ХПИ». № 3. С. 6-14.
- 3. Hubka P., Rosík V., Zdinak J., Tysler M., Hulin I. Independent component analysis of electrogastrographic signals // Measurement science review. 2005. V. 5, Sec. 2. P. 21-24.

- 4. Cardoso J.-F. High-order contrasts for independent component analysis // Neural Computation. 1999. Vol. 11. P. 157-192.
- 5. Choi S., Cichocki A., Beloucharni A. Second order nonstationary source separation // Journal of VISI Signal Processing. 2001. P. 1-13.
- 6. Hyvarinen A., Karhunen J., Oja E. Independent component analysis. By John Wiley and Sons, 2001. 481 p.
- 7. Cruces S., Castedo L., Cichocki A. Robust blind source separation algorithms using cumulants // Neurocomputing. 2002. Vol.49. P. 87-118.
- 8. Cardoso J.-F., Laheld B.H. Equivariant adaptive source separation // IEEE Transactions on Signal Processing. 1996. Vol. 44, no. 12. P. 3017-3030.
- 9. Choi S., Cichocki A., Amari S. Flexible independent component analysis // Journal of VLSI Signal Processing. 2000. Vol. 26, no. 1/2. P. 25-38.
- 10. Amari S. Natural gradient learning for over- and under-complete bases in ICA // Neural Computation. 1999. Vol. 11. P. 1875-1883.
- 11. Cruces S., Cichocki A. Combining blind source extraction with joint approximate diagonalization: thin algorithms // The 4th International symposium on independent component analysis and blind signal separation. 2003. P. 463-468.
- 12. Amari S., Cichocki A., Yang H. A new learning algorithm for blind signal separation // Advances in neural information processing systems. 1996. Vol. 8. P. 757-763.

Поступила в редакцию 6.03.2008

Рецензент: д-р техн. наук, проф. М.Ф. Лагутин, Харьковский национальный университет радиоэлектроники, Харьков.