
Надійність програмного забезпечення

261

UDC 004.056:004.77

K.I. LOBACHOVA

National Tavrida University, Simferopol, Ukraine

THE CONCEPT AND ARCHITECTURE OF SAFETY CASES:

ELEMENTS OF ANALYSIS

The safety case and trust case concepts are presented, several development methodologies are discussed. The
structures of the three most common notations for representing safety cases are reviewed, with their main ele-
ments being thoroughly described and the notation argument models schematically illustrated and analyzed.
Different safety systems are compared in terms of the development approaches, presentation techniques and
information sources used for safety cases implementation. The general scope, goals and main principles of
ForSyDE Modelling Framework are introduced.

Key words: Safety case, trust case, notations, Toulmin, ASCAD, GSN, ForSyDE.

Introduction

In our modern world, there are many industrial
processes that are of great social concern because of
their complexity and the risk of potential failures
which can endanger human lives or lead to serious
environmental problems. For almost any system the
most effective means of limiting liability (accident
risk) is to implement an organized system safety
function, beginning at the conceptual design phase
and continuing through to its development, fabrica-
tion, testing, production, use and ultimately disposal.

In the present paper we outline a safety case meth-
odology, which has been actively developing in recent
years. Many scientists such as Peter Bishop, Tim Kelly,
J Górski and others have been analyzing and improving
it in their works ([1], [3], [6], [8]). We also examine
different notations sketching the structure and the func-
tions of their components, and describe the modern
frameworks used in the area.

The paper is structured into five main sections: the
first one introduces a safety case methodology; the sec-
ond provides an overview of the most common nota-
tions; the next provides some suggestions for safety case
implementation; the fourth chapter outlines the Trust
Case methodology and describes Trust-IT framework
for the trust case development; and the last one exam-
ines a ForSyDE modeling framework which can be con-
sidered an element of safety case methodology. The
paper ends with some concluding remarks and statement
of our future research plans.

1. Safety case concept overview

Software is increasingly used in many different

applications. Of course, not all of the software products

have the same criticality level. In fact, there are three
classes of systems that differ in respect to safety. They
are defined as: safety systems, safety-related systems
and systems not important to safety. We are only inter-
ested in the first and second classes as they are sensitive
to safety and require a certain work to be done to ensure
safe operation.

To start working in this field we need to examine
the Safety Case concept.

In classical theory safety case is defined as "A
documented body of evidence that provides a convinc-
ing and valid argument that a system is adequately safe
for a given application in a given environment". [1]

To implement a safety case it's necessary to:
 make an explicit set of claims about the sys-

tem;
 produce the supporting evidence;
 provide a set of safety arguments that link the

claims to the evidence;
 make clear the assumptions and judgments un-

derlying the arguments;
 allow different viewpoints and levels of detail.
There are also several alternative definitions, let’s

consider the following more extended definition pro-
vided in the U.K. Ministry of Defense Ship Safety Man-
agement System Handbook [2]

A safety case is a comprehensive and structured set
of safety documentation which is aimed to ensure that
the safety of a specific vessel or equipment can be dem-
onstrated by reference to:

 safety arrangements and organization;
 safety analysis;
 compliance with the standards and best prac-

tice;
 acceptance tests;

 K.I. Lobacheva
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2009, № 7 (41)

Надійність програмного забезпечення

262

 audits;
 inspections;
 feedback;
 provision made for safe use including emer-

gency arrangements".
From these two definitions it is clear that the

safety case is a document. We should also mention that
in some standards the safety case is often used as a
logical concept. But the common practice is not to
distinguish between the safety case as a logical con-
cept and the safety case as a physical document and
use this term to cover both meanings.

It is also worth to mention that adequately or
acceptably safe is not an undefined concept. It is
usually quite clearly expressed as prescriptive re-
quirements, development codes or assessment prin-
ciples.

For example, Defense Standard 00-55 expresses
requirements concerning the development and assess-
ment of safety critical software systems and even goes
so far as to define the expected structure and contents of
safety case reports. Prescriptive requirements are a third
party expression of a high-level safety argument –
where meeting requirements implies some degree of
safety. The safety case must clearly identify and address
applicable requirements [3].

Whilst there are some variations between the rec-
ommendations of the standards the following list illus-
trates the most typical headings expected within a safety
case report [3].

 Scope;
 System Description;
 System Hazards;
 Safety Requirements;
 Risk Assessment;
 Hazard Control / Risk Reduction Measures;
 Safety Analysis / Test;
 Safety Management System;
 Development Process Justification;
 Conclusions.

2. Safety case notations

The first conceptual work in the area was con-

ducted by Toulmin in the 1950s. He developed a
framework and graphical notation for representing
the structure of an argument. Toulmin’s ideas have
influenced the most important methodologies for
safety case development.

Different safety case notations such as Claims-
Argument-Evidence and Goal Structuring Notation
have been developed based on the Toulmin’s work.

Below we consider each notation more closely.

2.1. Toulmin’s notation

Toulmin’s notation describes the scheme for the
structure of a typical argument. The model is presented
in the fig. 1.

Fig. 1. Toulmin's argument model

The scheme above contains the following compo-
nents:

 Claim – a certain conclusion to be demon-
strated, some statements about the property of the sys-
tem or its subsystem which is under consideration (a
requirement, a property that the system should possess
and so forth);

 Data – the facts appealed to as a foundation for
the claim;

 Warrant – the reason why the evidence sup-
plied should be accepted, the warrant that the facts in-
deed support the claim. It actually links the data and
other grounds to the claim;

 Qualifier – the degree of confidence that can be
placed on the claim;

 Rebuttal – counter-arguments that can be used,
or certain conditions under which the claim may be fal-
sified.

Validity and soundness of such arguments can be
considered.

The validity of an argument is the acceptability of
the justification (i.e. the warrant) used. The premises
(i.e. the data) should be relevant (they should influence
the conclusion, i.e. the claim) and adequate (truthfulness
of the premises should imply truthfulness of the conclu-
sion).

The soundness of an argument can be understood
as the validity of the inference and the acceptability of
the premises [4].

Following Toulmin's approach, more recent nota-
tions with supporting methodologies have been devel-
oped. And the following section describes a famous
Claims-Argument-Evidence or ASCAD notation.

2.2. ASCAD notation

ASCAD stands for "Adelard Safety Case Devel-

opment". ASCAD notation is a notation that uses a
"claims-arguments-evidence" motif for representing

Надійність програмного забезпечення

263

argument structure [1]. The notation scheme is provided
in the fig. 2.

Fig. 2. ASCAD argument model

The main elements of the structure are:
 Claim about a property of the system or some

subsystem.
 Evidence which is used as the basis of the

safety argument. This can be facts, (e.g. based on estab-
lished scientific principles and prior research), assump-
tions, or subclaims, derived from a lower-level sub-
argument.

 Argument linking the evidence to the claim,
which can be deterministic, probabilistic or qualitative.

 Inference the mechanism that provides the
transformational rules for the argument.

It is also possible to have two (or more) independent
arguments supporting the same claim.

It is worth to mention that “evidence” can be a
sub-claim produced by a subsidiary safety-case. In other
words, claims can take a set of sub-claims as their
grounds and we can demonstrate the top level claim by
showing that the lower level grounds are justified and
making sure all the arguments are valid.

This means that there can be a relatively simple
top-level argument, supported by a hierarchy of subsidi-
ary safety cases. This structuring makes it easier to un-
derstand the main arguments and to partition the safety
case activities.

2.3. GSN notation

GSN or Goal Structuring Notation is a graphics-

based notation that explicitly represents the individual
elements of any safety argument (requirements, claims,
evidence and context) and (perhaps more significantly)
the relationships that exist between these elements (i.e.
how individual requirements are supported by specific
claims, how claims are supported by evidence and the
assumed context that is defined for the argument).

The principal symbols of the notation are shown in
the fig. 3 (with example instances of each concept).

Below the primary elements of the notation are ex-
plained [5]:

 A goal states a claim (proposition or statement)
that is to be established by an argument. A GSN dia-

gram (called a goal structure) will usually have a top-
level goal, which will often be decomposed into more
goals.

 A strategy describes the method used to de-
compose a goal into additional goals.

 A solution describes the evidence that a goal
has been met.

 The context associated with another GSN ele-
ment lists information that is relevant to that element.
For example, the context of a particular goal might pro-
vide definitions necessary to understand the meaning of
the goal.

 An assumption is a statement that is taken to be
true, without further argument or explanation.

 A justification explains why a solution pro-
vides sufficient evidence to satisfy a goal.

To construct an argument, the elements of the
GSN notation are linked together using directed lines.
An example of a safety argument goal structure is
shown in the fig. 4.

The key benefit of GSN is that it improves the
comprehension of the safety argument amongst all of
the key project stakeholders – it is the reason why GSN
has been adopted by a growing number of companies
within safety-critical industries (such as aerospace,
railways and defense) for the presentation of safety ar-
guments within safety cases.

Fig. 3. GSN notation elements

3. Elements of technique

In the previous chaptes we described the general
concept and structure of safety cases. Now let us offer
some suggestions for producing a safety case. The ap-
proach will depend on a system you are working on and
will be different for different (simple and complex,
safety critical and safety-related) systems. Some basic-
things that should be taken into account are provided in
the table below (tabl. 1).

Надійність програмного забезпечення

264

Fig. 4. A sample Goal Structure
4. Trust case

Now if we look at the issue on a broader scale, we

can say that there are argument structures that are used
to demonstrate properties different from safety. Such
structures are called trust cases or assurance cases. A

trust case is a documented base that provides satisfac-
tory (from a given viewpoint) justification for a speci-
fied set of claims (regarding properties of an object con-
sidered for a given purpose in a given environment) to
make a judgment about their trustworthiness.

This definition was provided by Górski [6], pro-
Table 1

Implementing safety cases for different systems
 Safety case
System type Hierarchy Simplicity Notations Information

Complex safety-
critical systems

+
Layered safety case
with top-level and
sub-level claims.
Relatively simple
top-level arguments
are supported by a
hierarchy of subsidi-
ary safety cases.

+
Simplicity is
essential for this
type of systems.
Use simple
claims, clear
supporting
evidence.

Use advanced pref-
erably graphical
notations that ex-
plicitly represent
the individual ele-
ments and the rela-
tionships between
them.
For example, GSN
notation.

Use only reliable
internal source of
information.

The data must be
accurate, precise,
timely identified
and complete.

Simple safety-critical
systems

–
As system is simple,
subsidiary safety-
cases are not needed.

+
Simplicity is
required.

Use any notation
with simple ele-
ment structure.

Internal source
of accurate
information is
preferred.

Complex safety-
related systems

+
Layered safety case
with subsidiary safety
cases created for sub-
systems.

–
Simplicity is
preferred but not
required.

GSN or ASCAD
notation is recom-
mended.

Internal testing
information can
be used together
with adequate
operational feed-
back.

Simple safety-related
systems

–
Structuring is not
needed.

–
Simplicity is not
necessary.

Use any notation
suitable for repre-
senting the case.

Functional test-
ing and adequate
operational feed-
back can be used
to compensate
the lack of inter-
nal information.

Надійність програмного забезпечення

265

fessor at Gdansk University of Technology. The view-
points mentioned in the definition represent concerns of
viewers of the trust case (stakeholders, auditors, etc.)
about the object (a system, organization, etc.) under
consideration. The documented base mentioned can
include any evidence and justification, and is repre-
sented as an argument structure.

Górski has also originated the Trust-IT methodol-
ogy for safety case development based on the Toulmin’s
notation we examined above (fig. 1). It is one of the
most advanced methodologies to the date, with a Trust-
IT Framework tool created for the development of trust
cases and their application in different scenarios.

The Trust-IT framework consists of three compo-
nents:

 Application component – explains possible us-
age scenarios of trust cases.

 Methodological component – explains how to
develop and maintain trust cases, defines the language
for trust case development, the syntax, semantics and
typical argument patterns for trust cases, as well as
business processes and procedures related to the appli-
cation scenarios.

 Tool component – provides support for full-
scale exploitation of the two other components.

The structure of the Trust-IT argument model is
presented on the fig. 5.

Fig. 5. Trust-IT argument model

A brief description of the nodes based on the [4] is pro-
vided blow:

 Claim – a proposition which expresses a de-
sired property; each claim requires further justification,
it is supplemented by an explicit argument.

 Argument Strategy – the basic idea how to
demonstrate the conclusion and what the criteria for the
selection of the premises are. A claim can have more
than one argument strategy, in which case they provide
independent arguments of the conclusion.

 Counter-Argument Strategy – the basic idea on
which rebuttal of a supported claim is based. They can
be treated as argument strategies for the negation of the
conclusion. A claim can have multiple counter-

argument strategies. It can also have argument strategies
together with counter-argument strategies.

 Warrant – a conveyance relationship between
premises and a conclusion. It explains why in given
circumstances it necessitates or makes liable obtaining
the conclusion if the premises obtain.

 Assumption – a premise which is taken as it is,
without any further justification. By an assumption a
property which is not dependent on the party which
provides the trust case is represented.

 Fact – a statement or assertion of verified in-
formation about something that is the case or has hap-
pened. It can be obvious information or information
based on other sources, external to the trust case.

 Reference – a link to the external, with respect
to a given trust case, world. It can point to any identifi-
able, external object, being usually, in practice, an entity
pointed to by a URL address. By means of references
objects which contain evidence related to the argument
kept in the trust case can be integrated.

 Information – additional information, which is
not part of the argument itself. It can be put anywhere in
the trust case and contains explanatory information,
which can help to understand the meaning of the trust
case or it helps organize the trust case structure.

 Links – an internal pointer pointing from one
element of the trust case at another. By using links •one
can overcome the tree-like structure of the trust case and
make it a directed acyclic graph.

Claims and warrants can be demonstrated using
other claims that means that the structure can grow re-
cursively. Therefore, trust cases can be developed by
provision of more detailed arguments for claims and
some of warrants until all of them are fully justified.

The argument model is very expressive and can be
applied to represent both formal inference and informal
arguments. It provides means of representing arguments
based on highly formalized analysis as well as uncertain
evidence and inductive inference, which are so common
in real life situations.

5. ForSyDE modelling framework

ForSyDe stands for Formal System Design. It is a

methodology developed by KTH (Royal Institute of
Technology, Stockholm) with the objective to move
system design (i.e. System on Chip, Hardware and
Software systems) to a higher level of abstraction and to
bridge the abstraction gap by transformational design
refinement.

Further description is based on the official For-
SyDe documentation [7]. ForSyDe is based on carefully
selected formal foundations. First, the designer must
supply a initial specification model, which can mix dif-

Надійність програмного забезпечення

266

ferent Models of Computation (MoCs) i.e. Synchronous
MoC, Untimed MoC etc.

It is modeled by a network of processes inter-
connected by signals. Each process is created by a
process constructor, allowing separate communica-
tion and computation.

Then, the abstract specification model is refined
by different design transformations into a detailed
implementation model, which is finally translated into
a target implementation language.

ForSyDe research currently pursues two main
goals:

 System modeling with heterogeneous models
of computation. Libraries for different computational
models allowing the simulation of heterogeneous
systems have been developed. The libraries stretch
from continuous time to synchronous time models.
Using ForSyDe's shallow-embedded DSL (Domain
Specific Language) electronic systems with analog
and digital parts can be simulated.

 Development of a transformational design re-
finement methodology. A methodology for transfor-
mational design refinement have been outlined. The
system, initially described as an abstract specification
model, is refined into a more detailed implementation
through semantic preserving and non-semantic pre-
serving design transformations. Then, the resulting
implementation model is translated into a target lan-
guage.

ForSyDe systems are modeled as networks of
processes interconnected by signals. Processes are
pure functions on signals, i.e. for a given set of input
signals a process always gets the same set of output
signals.

n m
p : S S ... S S S ... S

They can also be viewed as a black box which per-
forms computations over its input signals and forward
the results to adjacent processes through output signals
(fig. 6).

Fig. 6. Processes viewed as boxes

A process does not necessarily react identically to
the same event applied at different times. But it will
produce the same, possibly infinite, output signals when
confronted with identical, possibly infinite, input signals
provided it starts with the same initial state:

0 0 1 1 n n 1 2 n 0 1 ni i , i i ,...,i i p(i ,i ,..., i) p(i , i ,..., i)
Another key element in ForSyDe is Process Con-

structor. A process constructor PC takes zero or more
functions 1, 2, ... , n (which determine behavior of the
process) and zero or more values 1, 2, ... , n (deter-
mine the process configuration parameter or initial
state) as arguments and returns a process p P:

1 2 n 1 2 np pc(f , f ,..., f , v , v ,..., v)
The functions operate over the values carried by

signals, not over signals themselves.
The structure is presented below (fig.7).

Fig. 7. A process constructor

The methodology defines a set of well-defined
process constructors, which are used to create processes.

ForSyDe is implemented as a EDSL (Embedded
Domain Specific Language) on top of the Haskell pro-
gramming language with the implementation relying on
different Haskell-extensions.

Conclusion

In this paper we discussed some elements of for-

mal systems and tools as part of a Safety Case method-
ology, examined different notations and analyzed their
structure, reviewed the frameworks and methodologies
used in the area. All these information will be further
used for preparing information technology and tool for
assessing quality of critical software systems.

References

1. Bishop P. A Methodology for Safety Case De-

velopment / P. Bishop, 1998.
2. U.K. Ministry of Defense, "JSP 430 - Ship

Safety Management System Handbook," Ministry of
Defence, 1996.

3. Kelly T. A Systematic Approach to Safety Case
Management / T. Kelly, 2003.

4. Cyra Ł. A Method of Trust Case Templates to
Support Standards Conformity Achievement and As-
sessment / Ł. Cyra, 2008.

5. Holloway C.M. Safety Case Notations: Alter-
natives for the Non-Graphically Inclined? / C.M. Hol-
loway, 2008.

Надійність програмного забезпечення

267

6. Górski J. Trust Case – a case for trustworthi-
ness of IT infrastructures / J. Górski // Cyberspace Se-
curity and Defense: Research Issues, 2005.

7. Formal System Design Tutorial [Електронний
ресурс] – Режим доступу. http://www.ict.kth.se/f-
orsyde/files/tutorial/tutorial.html.

8. Kelly T. Arguing Safety – A systematic Ap-
proach to Managing Safety Cases / T. Kelly, 1998.

9. Acosta. A Rising the abstraction level in System
Design / A. Acosta, 2008.

10. Sander I. Modelling Adaptive Systems in For-
SyDe / I. Sander, A. Jantsch, 2008.

11. Sklyar V.V. Software Quality Assessment and
Expertise / V.V. Sklyar, V.S. Kharchenko (ed), 2008.

Поступила в редакцию 11.02.2009

Рецензент: д-р техн. наук, проф. Б.М. Конорев, Национальный аэрокосмический университет им. Н.Е. Жуков-
ского «ХАИ», Харьков, Украина.

КОНЦЕПЦИЯ И АРХИТЕКТУРА ОТЧЕТОВ ПО БЕЗПАСНОСТИ:

ЭЛЕМЕНТЫ АНАЛИЗА
Е.И. Лобачева

Представлены концепции отчетов по безопасности и доверию, описаны методологии по их построе-
нию. Рассмотрены структуры трех наиболее распространенных нотаций для представления отчетов по безо-
пасности, с подробным описанием основных элементов и схематичным представлением и анализом моделей
аргументов этих нотаций. Проведено сравнение различных систем в отношении подходов к разработке, тех-
ник представления и информационных источников, используемых для реализации отчетов по безопасности.
Указаны основные сферы применения, цели и принципы работы ForSyDE Modelling Framework.

Ключевые слова: Safety case, trust case, нотация, Тулмин, ASCAD, GSN, ForSyDE.

КОНЦЕПЦІЯ ТА АРХІТЕКТУРА ЗВІТІВ ПРО БЕЗПЕКУ:
ЕЛЕМЕНТИ АНАЛІЗУ

К.І. Лобачова
Розглянуті концепції звітів про безпеку та довіру, описані методології їх побудови. Приведені та про-

аналізовані структури трьох найпоширеніших нотацій для створення звітів про безпеку, із детальним опи-
сом основних елементів та схематичним зображенням і аналізом моделей аргументів цих нотацій. Порівняні
різні системи у відношенні підхіду до розробки, техніки зображення та джерел інформації, що використо-
вуються при реалізації звітів про безпеку. Вказані основні сфери застосування, мети та принципи роботи
ForSyDE Modelling Framework.

Ключові слова: Safety case, trust case, нотація, Тулмін, ASCAD, GSN, ForSyDE.

Лобачева Екатерина Игоревна – аспирант кафедры компьютерной инженерии, Таврический нацио-

нальный университет, Симферополь, Украина, e-mail: kate.simferopol@gmail.com.

