
Надійність програмного забезпечення

268

UDC 004.4

M. FUSANI

ISTI-CNR, National Research Council, Pisa, Italy

EXAMINING SOFTWARE ENGINEERING REQUIREMENTS
IN SAFETY-RELATED STANDARDS

The paper analyses and compares a set of international standards for safety-critical systems whose behavior
depends on software. Various types of standards are selected, related to system functional safety in the domains of
nuclear plants and transportation (avionics, railway, automotive), as well as software engineering-related standards
with the role of reference, focused on process and product quality and on various software technologies.
Examination criteria are introduced and discussed, and the standards are compared against such criteria. Some
relevant issues are presented, deriving from the comparison, and potential users of the analysis are suggested.

Key words: Standards, functional safety, safety-critical systems, software engineering, software quality.

Introduction

Increased business and social benefits are expected
from products and processes conformity to public
standards, as these overcome national boundaries and
cross various application domains.

Most often Software Engineering (SE) is invoked,
as a transversal technology, by standards for designing
and operating different kinds of complex systems. And
as a self-standing discipline, SE itself is continuously
challenged by the demand for system augmented
performance and flexibility coming from industry,
boosted by unceasing competition.

This fact has a positive side, in that technology
transfer is possible, in principle, from one domain to the
other. However, as we note in the following, different
standards referring to SE practices just appear to chase
each other over time, but in practice they pick from the
technology in an unpredictable way.

The purpose of this paper is to examine how the
increasingly evolving solutions offered by SE are
addressed (or ignored) in Functional Safety-related
standards produced and updated at different times and
whether or not any advantages could be derived by
mutually comparing such standards.

As human life, environment and other valuable
resources can be threatened by the (good or bad)
behaviour of complex systems, these standards are
expected to be the most demanding in terms of
balancing intrinsic project and system flexibility due to
software with necessary quality, dependability and
safety.

We are interested in showing and discussing more
an examination approach than the completeness of
results. Thus, only some application domains are
considered here: aerospace, nuclear power plants,

railways and automotive. The benefits of such an
analysis would be mainly perceived by: i) standards
makers (interested in criteria for practices and
techniques selection); ii) standards users (developing
organizations, struggling for multiple standards
compliance); iii) regulatory organisms, certification
bodies and assessors.

In Section 1 some characteristics of the standards
are shown and the examining approach is sketched.

In Section 2 a non-exhaustive list of criteria for
standards examination and comparison is presented,
with concise criteria rationales.

In Sections 3 and 4 the results of the comparison
against the criteria are presented and discussed. In
Section 5 some conclusions are drawn, that include the
improvements of the approach for continuing this
research line.

1. Overview of Standards and their
evolution

As we are dealing with SE in Functional Safety-

related Standards (FS_Std), we cannot miss to refer also
to the standards concerned with SE only (SE_Std). The
relationships between the two categories are one of the
objectives of the paper.

1.1. FS_Std’s

As mentioned in Introduction, we only consider

some examples of FS_Std category, that we believe as
representative enough of our purposes. Besides the
standards related to specific sectors [1]. [2], [3], [4], we
add two more general ones, still related to Functional
Safety-related systems [5], [6].

 M. Fusani

РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2009, № 7 (41)

Надійність програмного забезпечення

269

We do not consider here for space reasons many
other interesting standard-regulated fields such as
medical, defence, vessels, chemical plants and others,
convinced that further comparison against the criteria
applied here can provide even more interesting results,
which we leave to the prosecution of this research work.

1.2. SE_Std’s

We notice that also SE_Std’s offer a discontinuous
evolution (marked by their publication history) and,
even if they seem somewhat more mature in various
aspects, they are not in some other. We also realise that
it is quite easy to argue that state-of-art in SE is no SE
standard: it is constituted by all the research, proposals,
case studies and projects reported in scientific papers
and books. This general situation is quite a mobile target
for our comparison work, so we include some general
references, that can be considered as “software
technology compendia”, which in turn refer to the vast
SE literature.

For space reasons again and for sake of generality,
we restrict all reference to a limited but comprehensive
enough set of items: software process standards [7], [8],
[9], product standards [10] and technology compendia
[11], [12], [13].

1.3. Standard examination approach

Standards will be examined on the basis of
comparison criteria. Defining them is partly an arbitrary
task, yet we give here some information about the
underlying rationale for their selection (Section 3).
There is potentially quite a long list of criteria. Here
those are shown that mostly struck our attention in a
first pass of standard examination.

It should be said that “standards cannot just be
read” to be understood, but tried for use. Or made. The
author’s team used some of them for years at ISTI-CNR
in Pisa, for gap-analyses and certification work, and
participated in the design of some other. This is no
novel work at ISTI-CNR: years ago a similar
comparison work was done, with other standards (but
including the apparently never-obsolescing DO-178B),
with different, more “technical” criteria [14].

1.4. How to deal with abstraction levels

One of the most common problems in presenting a
technical discipline, especially in computer science, is
to uniformly manage abstraction levels when describing
a homogeneous list of items or features. One common
mistake is mixing levels up: for instance, including
implementation strategies and details in product
requirements description.

Standards usually do not make evident misuse of
levels of abstraction, however sometimes the inter-level
boundaries are not clear enough. This is going to be a
comparison criterion (Section 2.2).

It should be noticed that a good abstraction level
separation helps in a typical problem with standards,
that is, the need of keeping a stable enough reference
without preventing innovation.

2. Criteria for standards examination

2.1. Rationale

How can we define such criteria? The purposes are

not to judge if a standard (of the SF_Stds’s list) is better
of fitter to use than another (they belong to different
domains, after all), but to check if any of them might
gain something useful from another.

Of course, a software-related clause or requirement
useful for a defined application domain may be no use
or non-applicable for another, so the opportunity of
exporting/importing such clause does not depend only
on its “modernity”. Yet, we see that sometimes less
demanding standards recommend more evolved SE
practices than other high-criticality norms.

It should be noticed that, if one believes the
software as the most critical factor in functional
safety-related systems [15], its contribution to system
reliability and safety is not quite quantifiable, and
still the unsatisfying paradigm “put as much high-
tech as you can” is claimed at the higher criticality
levels.

Besides, we want to extend the examination
beyond the SE aspects, to include some quality issues
such as standard usability and ability to assess
conformance.

Finally, even if this would be an interesting
examination criterion, we are not concerned with
political economics motivation for standards.

2.2 Criteria and their rationale

Criteria can be derived from the following

considerations, or meta-criteria:
1 – common and diverse features (both SE-related

and not) of the standards, in terms of contents;
2 - structure, completeness, readability, adequacy

to intended use;
3 – contents, in terms of product success assurance

(quality may favour success, but not guarantee it);
4 – how peculiarity of the application domain

(type of technology, expected impact on safety) is
related to the SE (and non-SE) practices prescribed as
standard requirements or clauses.

Надійність програмного забезпечення

270

In the following, we list the chosen criteria,
together with their rationale. They also are divided into
three categories, depending on their nature and on their
relationships with SE, and are also ranked according to
relevance given by author’s experience (this is a quite
subjective aspect of the examination, difficult to get rid
of). Criteria denoted as CS are more focused in system
aspects and qualities of the standard. Criteria denoted as
CG are about general contents on software. Criteria
denoted as CT are about technical software issues.
Meta-criteria relationships are shown for the CS’s
(within brackets).

CS 1: Arbitrariness of standard interpretation for
conformity assessment.

Rationale: The issue depends on how much clear
and precise the clauses are in terms of requirements. Not
to be confused with degree of freedom in standard
compliance by the implementers of requirements
(standard users). It puts some problems with
certification (meta: 2).

CS 2: Relevance given to product requirements
analysis.

Rationale: Requirement phase is where the destiny
of all the qualities of the product (typically in operation)
is decided (meta: 1, 3).

CS 3: Process conceived as an asset of organized
and reusable practices (it survives across projects).

Rationale: Process is not just a collection of
practices, but has its own autonomy, human and
infrastructure resources, defined inputs and outputs and
interacts with other processes. It typically is an
organisation’s asset (meta: 3).

CS 4: Relevance given to management practices.
Rationale: Management is as essential as

techniques for the success of the project (achieving its
defined goals) (meta: 3).

CS 5: Means to keep pace with evolving
technology.

Rationale: This is not easy in that it involves the
policy of the organizations that create and maintain
standards, but impacts on: i) separation between
standard requirements (what) and implementation
(how); ii) introduction of para-standard structures such
as standard maintenance records, guidelines, blogs
(meta: 3).

CS 6: Relevance given to system theory and
system engineering culture.

Rationale: In spite of recent progresses, system
theory and system engineering have not much helped
each other. Benefits are expected in terms of addressing
the systemic aspects of integrity through the
understanding of the multiple interactions among
system elements, mainly software elements (meta: 3).

CS 7: Relevance given to safety culture.

Rationale: Safety aspects (accidents, hazards and
risks) and impact on safety springing from any function,
component, level and phase of the project must be
understood and sought for by any project worker and
stakeholder (meta: 3).

CS 8: Relevance given to human factors.
Rationale: Mutual impact of technology and

human aspects (training, psychology, attitude,
responsibility) is expected to be balanced at its best
(meta: 3).

CS 9: Separating abstraction levels in standard.
Rationale: See Section 1.4 (meta: 2).
CS 10: Introduction of Integrity (SIL) or criticality

levels.
Rationale: Although the SIL approach is not new,

it is often misunderstood. Good explanation or easy-to-
find reference (even cross-standard!) should be provided
(meta: 1,3,4).

CS 11: Definition of purpose of the norm and
stakeholders.

Rationale: Usually this important information, that
is always there, is skipped or overlooked by the
reader/user. How to draw attention to it is a presentation
feature (meta: 2).

CS 12: Properties of components and systems vs.
properties of functions (safety, SIL, reliability).

Rationale: This is a non easy aspect to catch, and
needs clear explanation. It is also related with
independency between requirements and
implementation (meta: 3).

CS 13: Support given to independent assessment
or certification.

Rationale: Related to Criterion CS 1. To norm as
much as possible of the assessment process helps in
giving confidence that the results are repeatable and
reproducible, and then the products comparable (meta:
1,2).

CS 14: Relevance given to system operational
phase, including human system-related processes.

Rationale: Safety is played in operation, but ways
of operating may have requirements, as well the
operating environments. This is expected to be included
in the standard as well (meta: 1,3).

CG 1: Relevance given to use/reuse of
Commercial Off The Shelves (COTS) items and
Previously Developed Software (PDS).

Rationale: In-house PDS is quite often an issue.
Opportune SE practices about re-use and product lines
can get benefits from PDS. Both COTS and PDS must
be thoroughly evaluated and classified, and their
interfaces totally defined. Risks in changing COTS and
PDS must be identified and managed.

CG 2: Relevance given to tool selection and
certification.

Надійність програмного забезпечення

271

Rationale: This is a common important feature and
its importance is never stressed enough. Less addressed
but not less important aspects are relationships between
culture and tools, and tools integration problems.
Certification should be obtained by an accredited
Certification Body. Sometimes, supplier’s certification
cannot be replaced, but accreditation information should
be produced. User’s certification cannot give the same
confidence and should pair with proven-in-use
information.

CG 3: Relevance given to software isolation and
over-riding by the hardware.

Rationale: Prevention is quite recommendable.
About detection, care must be taken as of over-riding
conditions may require equal or higher integrity
requirements for the detecting functions.

CG 4: Addressing analysis of software impact into
the system and functions traceability.

Rationale: This is a basic problem with software in
safety. Whilst isolation (criterion CG 3) includes
prevention, impact analysis involves practices and
techniques (such as components interaction and
interface analysis) to apply any time in the lifecycle.

CG 5: Introducing criteria for selecting software
techniques and measures.

Rationale: Techniques should not be just a
mention-based list, and not only commented (this would
be better but is still rare). Providing elements to judge
how and when to use them, and requesting explicit
motivation for it is a success factor.

CG 6: Relevance given to configuration data.
Rationale: As important as software, they are

perhaps easier to deal with, but should have their own
documented lifecycle.

CG 7: Addressing connections between Software
and System.

Rationale: This is a borderline where first of all
competencies of system engineers and software
engineers should overlap and mutually corroborate.

CT 1: Relevance given to specific Formal Methods
(FM).

Rationale: Just requesting “formal methods” does
not give the user much help. Criteria for method
selection should be provided. FM is now an affordable
technology, also from the cultural point of view, and is
supported by automation.

CT 2: Introducing Model Checking.
Rationale: This FM category that allows to prove

properties on a modelled software system (such as
reachability of defined states and critical races) is much
more powerful that most static analyses.

CT 3: Introducing model based development.
Rationale: Mostly used in practice, hardly appears

in standards. Not a real FM, can be connected with FM-
related tools.

CT 4: Relevance given to software requirements
analysis.

Rationale: A must (criterion CS 2). Can and should
be supported by tools. Implicit or explicit quality model
for requirements is expected.

CT 5: Relevance given to verification and Testing.
Rationale: This is not only common issue but also

quite a broad area and it is expected to be covered in
terms of various categories of verification including test
procedures and tools, test levels, data definition, types
of tests, type of coverage, testing techniques, testing
process.

CT 6: Relevance given to diversity.
Rationale: Diversity needs careful planning,

execution and verification to avoid that it increases
complexity. Almost unavoidable when there is hardware
redundancy. It is costly.

CT 7: Introducing reliability testing.
Rationale: Estimating error rates on the basis of

statistics over test results would be much useful. There
has been a lot of effort over many years, and some
results are promising. It requires culture and maturity in
the organisation.

3. Examining and comparing standards in
the light of defined criteria

In this ongoing research, we cross the selected

criteria with all the selected standards (both FS_Std’s
and SE_Std’s). For each criterion, we examine how it is
met by each standard. We want to make it clear that this
is no merit judgment, but just detection: in fact, there
can be good reasons why some expectations are not
achieved completely.

In Table.1 the results of a first-step examination
are shown, where each of the criteria (whose definition
was re-worded for space reasons) can be seen as a factor
or a variable against which contents and properties of
the standards can be compared. Ordinal scoring values
(ranging 0 to 4) show how the standard is sensible to the
variables representing the criteria (4 is the highest
sensibility).

The values have been assigned on the basis of the
quantity of information produced per criterion. Contents
are, of course, more important that quantity and have
been also taken into account. Hyphens (“ – “) mean
either that the criterion is not applicable (such as for
IEC 60880, that addresses, by purpose, only some SE
practices), or that has not been applied yet (activity is
progressing: only a subset of the more than 300
statements that would result from the complete crossing
have been resolved).

What is important, analysing the table by rows, is
to enlighten those criteria that have higher rank in the
list and greater variability across the standards. This

Надійність програмного забезпечення

272

would mean that important features could be migrated
from one standard to another, or that some standard was
developed at a different maturity stage of the particular
practice or technology referred by the criterion.

It is more interesting, or more useful, to analyse
(still by rows) the relationships between FS_Std’s and
SE_Std’s. The overlap we find here has a different
meaning than that found within the FS_Std’s only.

4. Discussion

We may expect that the most recently updated

standards adopt the most innovative techniques. This is
only partially true.

The findings seem to show less sensitivity to
standard updates. Application domains are likely
responsible of the bigger difference.

It can be seen from the overall picture that some
aspects are addressed with similar emphasis (and
amount of information), such as testing. In our analysis,
this is not very relevant, as no standard has to give much
to others.

There are of course differences (for instance, some
standards, in their techniques and measures parts, do not
recognize the value of input/output test data), but, in this
first phase of the research, we keep our value scale at a
moderate level of detail (a sort of filtering, to make
evident only the most interesting variations).

Table 1
Results of the examination

rank

CS 1 interpretation for conformity 4 2 3 3 3 3 1 2 3 3 2 - - -
CS 2 requirements analysis 4 - 3 2 4 3 3 3 4 4 - 2 - 3
CS 3 process concept 4 - 4 1 3 1 4 4 4 4 - 4 2 4
CS 4 management 3 2 3 3 4 3 3 2 4 4 - 2 2 2
CS 5 evolving technology 3 2 2 3 1 3 3 3 3 3 2 4 3 4
CS 6 system engineering 3 2 3 2 3 3 3 3 3 3 2 - 1 2
CS 7 safety culture 3 1 3 3 3 3 4 - - - - - - -
CS 8 human factors 3 - 1 1 1 2 3 1 2 2 - 2 - 3
CS 9 abstraction levels 3 3 4 2 3 2 2 3 2 4 - 3 2 4
CS 10 Integrity levels 2 - 4 4 4 4 1 - - - - - - -
CS 11 purpose and stakeholders 2 2 3 3 3 3 2 - - - - - - -

CS 12 safe components vs.
functions 2 2 2 3 3 3 - - - - - - - -

CS 13 independent certification 1 2 4 2 3 3 1 2 3 3 2 - - -
CS 14 operational phase 1 3 3 2 4 2 1 2 2 2 2 - - -
CG 1 COTS / PDS 4 4 3 2 3 2 - - - - 3 - 3 1

CG 2
tools selection / certification

4
4 2 3 4 3 - - - - 4 - - -

CG 3 SW isolation 3 3 4 2 2 3 - - - - - - - -
CG 4 impact analysis / traceability 3 4 3 3 3 3 - - 2 2 - - - -
CG 5 technique selection criteria 2 - 2 3 1 3 2 - 1 1 - 3 - 1
CG 6 configuration data 1 - 2 4 - - - - - - - - - -
CG 7 SW - System borderline 1 - 4 2 3 3 - - 2 1 - - - -

CT 1 Formal Methos 4 1 1 1 1 1 - - - - - 2 - -
CT 2 Model checking 4 - - - - - - - - - - - - -
CT 3 model based developent 3 - - - 3 - - - - - - - - -
CT 4 requirements analysis 3 - 3 2 3 2 3 3 4 4 - 4 - -
CT 5 verification and testing 3 3 3 3 3 3 3 3 3 3 2 4 4 -
CT 6 diversity 2 4 3 2 2 2 - - - - - - - -
CT 7 reliability testing 1 - 1 - - - 1 - - - - 4 2 -

total score 44 73 61 70 63 40 31 42 43 19 34 19 24

IS
TQ

B
S

yl
la

bu
s

Sy
st

em
/S

of
tw

ar
e/

St
d

Q
ua

lit
y

So
ftw

ar
e

G
en

er
al

So
ftw

ar
e

te
ch

ni
qu

es

C
M

M
I +

S
af

e

SW
EB

O
K

CRITERIA

keywords

SE
I P

ro
ce

ss

Fr
am

ew
or

k

IS
O

/IE
C

 1
22

07

C
M

M
I

IS
O

/IE
C

 1
55

04

IS
O

/IE
C

 9
12

6
/

14
10

2

IE
C

 6
08

80
-2

D
O

-1
78

B

E
N

 5
01

28
/9

IS
O

 2
62

62
-6

/8

IE
C

 6
15

08
-2

/3

Reading by columns, what strikes the attention is
that FS_Std DO-178B, yet 18-year old, still gets a
relevant score.

This standard was thought of with certification
(basically, aircraft certification) in mind, and the
overall system (the product) is always in sight

Надійність програмного забезпечення

273

throughout its clauses, even when software
components are described.

The process concept (CS 3), independently
developed by DO-178B and other SE standards (such as
ISO/IEC 12207), should be better adopted by sector
standards, and in any case it should be harmonised with
the SE_Std’s.

This is really important because many companies,
to be conformant, feel that they must maintain, with
difficulty, different kinds of documents and skills for
the same task.

Cross-fertilization among standards of different
application domains would not necessarily be inhibited by
cost-barriers built by more critical sectors: automation is
going to enter, affordably and effectively in the software
process and, as pointed out in Introduction, there is just one
Software Engineering supporting all kinds of systems,
including Functional Safety-Related Systems.

Techniques such as Formal Methods (FM) and
Reliability Testing are not much addressed, but there is
evidence that the former will gain much and explicit
techniques such as Model Checking will appear in the
next editions, again due to more feasible and affordable
automated practices. A summary of current initiatives
about FM can be found in [16]. The latter technique,
proposed in literature since long [17], would be highly
valuable, but practitioners do not have still much
confidence in it: also proving its efficacy would be costly.

In general, we see that not necessarily the most
critical and sensitive fields get the most innovative stuff.
Standard makers working groups are heterogeneous: as
people from academia get in there to innovate, people
from industry, with good reasons, tend to be
conservative, excepting when it is matter of already
acquired technology.

Conclusions and Improvements

A set of international standards for safety-critical

systems have been compared in the light of defined
criteria, mostly oriented to analyse how the standards
make use of Software Engineering (SE) techniques. To
do so, some standards in the SE field have been also
selected and analysed according to the same criteria.

Comparison results have been discussed, showing
that some safety critical-related standards would benefit by
importing practices and techniques from other similar
standards and from SE standards with no higher cost, and
that there are cases where SE standards themselves could
be improved. What has been presented is basically a
method, and this method is going to be improved and used
in an ongoing research work. In fact, a sort of finer
evaluation (still in ordinal scales) will be adopted and some
light factor analysis will be used, in order to measure the
variability that has been qualitatively shown, to look for

factors aggregates and to indicate areas in which practice
migration could be made more effective.

References

1. IEC 60880-2, Software for Computers in the

Safety Systems of Nuclear Power Stations – Software
aspects of defence against common cause failures, use of
software tools and of pre-developed software / IEC, 2000.

2. RTCA DO-178B, Software considerations in
airborne systems and equipment certification / RTCA,
1992.

3. CENELEC - EN 50128 – Railway applications –
Communications, signalling and processing systems –
Software for railway control and protection systems /
CENELEC, 2002.

4. Bellotti M. Seminar on ISO/CD 26262 Road
vehicles – Functional safety - Part 6: Product
development: software level – Part 8: Supporting
processes [Электронный ресурс] / M. Bellotti, 2008. –
Режим доступа к ресурсу: http://www.automotive-
spin.it/download.php.

5. IEC 61508, Functional safety of
electrical/electronic/programmable electronic safety-
related systems, Part 3, Software requirements / IEC,
1997.

6. SEI A Safety Extension to CMMI-DEV, V1.2
TECHNICAL NOTE CMU/SEI-2007-TN-006 / SEI
Carnegie-Mellon, 2007.

7. ISO/IEC 12207 FDAM Information technology
– Software life cycle processes / ISO/IEC, 1995.

8. Chrissis M. CMMI: Guidelines for Process
Integration and Product Improvement / M. Chrissis, M.
Konrad, S. Shrum. - Addison-Wesley Professional, 2006.

9. ISO/IEC 15504-2 Information technology --
Process assessment -- Part 2: Performing an assessment /
ISO/IEC, 2003.

10. ISO/IEC 9126-1 Software engineering- Product
quality- Part 1: Quality model / ISO/IEC, 2001.

11. SWEBOK Guide to the Software Engineering
Body of Knowledge / A project of the IEEE Computer
Society Professional Practices Committee / IEEE,
2004.

12. International Software Testing Qualification
Board - ISTQB Syllabus / ISTQB, 2007
(http://www.istqb.org/download.htm).

13. SEI A Process Research Framework / The
International Process Research Consortium / SEI
Carnegie-Mellon, 2006.

14. Mazzanti F. Assessment of the Safety of
Hazardous Industrial Processes in the Presence of
Design Faults / F. Mazzanti, L. Strigini. - SHIP Project,
1993.

15. Leveson N. System Safety Engineering: Back To
The Future / N. Leveson, 2002 (http://sunnyday.mit.edu/).

16. Ponsard C. From Rigorous Requirements
Engineering to Formal System Design of Safety-Critical

Надійність програмного забезпечення

274

Systems [Электронный ресурс] / C. Ponsard,
P. Massonet, G. Dallons. - ERCIM NEWS, 2008. Vol. 75.
- P. 22-23. – Режим доступа к ресурсу: http://ercim-
news.ercim.org/content/blogcategory/0/699/.

17. Frankl P. Choosing a testing method to deliver
reliability / P. Frankl, D. Hamlet, B. Littlewood,
L. Strigini. - International Conference on Software
Engineering, 1997. - P. 68-78.

Поступила в редакцию 2.02.2009

Рецензент: д-р техн. наук, доцент, проф. кафедры О.В. Поморова, Хмельницкий национальный университет,
Хмельницкий, Украина.

АНАЛИЗ ТРЕБОВАНИЙ К РАЗРАБОТКЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

В СТАНДАРТАХ ПО БЕЗОПАСНОСТИ
M. Фузани

В статье анализируются и сравниваются международные стандарты для систем с особыми
требованиями по безопасности, поведение которых зависит от программного обеспечения. Выбраны
различные типы стандартов, относящиеся к функциональной безопасности системы в сфере атомных
станций и транспортных средств (авиация, железная дорога, автомобилестроение), а также стандарты,
относящиеся к разработке программного обеспечения, сосредоточенные на процессе и качестве продукта и
на различных технологиях программного обеспечения. Приведен и обоснован критерий анализа и
произведено сравнение стандартов согласно этому критерию. Представлены некоторые важные результаты
сравнения и предложены потенциальные пользователи этого анализа.

Ключевые слова: стандарты, функциональная безопасность, системы с особыми требованиями к
безопасности, разработка программного обеспечения, качество программного обеспечения.

АНАЛІЗ ВИМОГ ДО РОЗРОБКИ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

У СТАНДАРТАХ З БЕЗПЕКИ
M. Фузані

У статті аналізуються та порівнюються міжнародні стандарти щодо систем з особливими вимогами з
безпеки, поведінка яких залежить від програмного забезпечення. Обрані різні типи стандартів, що
стосуються функціональної безпеки системи у сфері атомних станцій та транспортних засобів (авіація,
залізниця, автомобілебудування), а також стандарти, що відносяться до розробки програмного забезпечення
та зосереджені на процесі і якості продукту та різних технологіях розробки програмного забезпечення.
Приведено і обґрунтовано критерій аналізу та проведено порівняння стандартів згідно цього критерію.
Представлені деякі важливі результати порівняння та запропоновані потенціальні користувачі цього аналізу.

Ключові слова: стандарти, функціональна безпека, системи з особливими вимогами до безпеки,
розробка програмного забезпечення, якість програмного забезпечення.

Марио Фузани – канд. техн. наук, научный сотрудник Центра оценки программного обеспечения и

систем, Пиза, Италия, e-mail: mario.fusani@isti.cnr.it

