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The paper reports results of finding distribution laws representing Web-Services response time and delays con-
tributing. Theoretical investigations provided are based on real-live statistics. Results of hypotheses checking 
are reported. Response time simulation approaches are described. Experimental investigation and mathemati-
cal analysis of response time are reported. Our experiments have shown that delays arising in Service-
Oriented Architecture have unstable characteristics make them really difficult to describe theoretically over 
a long period of time.  
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Introduction 

 
Web Services are becoming a critical technology 

in building modern distributed information systems for 
e-business, e-science, e-medicine applications, etc. 
Concerning e-science, the use of Web Services is espe-
cially prominent in Bioinformatics and Systems Biology 
projects that focus on processing large datasets, and 
sharing and exchanging them across different organiza-
tions and institutes. 

Different Web Services are orchestrated into work-
flows describing experiments that carry out in silico 
what used to be conducted in vivo in laboratories, but 
involve the use of computational resources such as data 
repositories and analysis/simulation programs available 
on the Internet [1]. Such in silico experiments may be 
long-lived due to the large volumes of data being ana-
lysed, whilst there may also be requirements on the 
timeliness of the workflow enactment. 

As far as Service-Oriented Systems are mainly 
built as overlay networks over the Internet their depend-
able construction and composition are complicated by 
the fact that the Internet is a poor communication me-
dium (has low quality and is not predictable). They can 
be vulnerable to internal faults from various sources and 
casual external problems such as communication fail-
ures, routing errors and network traffic congestions. 
Therefore, the performance of such system is character-
ised by high instability [2], i.e. it can vary over a wide 
range in a random and unpredictable manner. 

Inability of the WSs involved to guarantee a cer-
tain response time and performance and the instability 
of the communication medium can cause timing fail-
ures, when the response time or the timing of service 
delivery (i.e., the time during which information is de-

livered over the network to the service interface) differs 
from the time required to execute the system function. A 
timing failure may take the form of early or late re-
sponse, depending on whether the service is de-livered 
too early or too late [3]. For complex bioinformatics 
workflows incorporating many different WSs some us-
ers may get a correct service, whereas others may per-
ceive incorrect services of different types due to timing 
errors. These errors may occur in different system com-
ponents depending on the relative position in the Inter-
net of a particular user and particular WSs, and, also, on 
the instability points appearing during the execution. 
Thus, timing errors can become a major cause of incon-
sistent failures usually referred to as the Byzantine fail-
ures.  

In this work we use the general synthetic term un-
certainty to refer to the unknown, unstable, unpredict-
able, changeable characteristics and behaviour of WS 
and SOA, exacerbated by running these services over 
the Internet. Understanding uncertainty arising in SOA 
is crucial for choosing right recovery techniques, setting 
timeouts, and adopting system architecture and its be-
haviour to such changing environment like the Internet 
and SOA. The purpose of the paper is to find a way to 
predict and represent the performance uncertainty in 
Service-Oriented Architecture by employing one of the 
theoretical distributions, used to describe such random 
variables like the WS response time. A motivation for 
this is the fact shown by many studies (e.g. [4, 5]) that 
the Exponential distribution does not represent well the 
accidental delays in the Internet and SOA. This work 
aims at estimating and predicting of evident perform-
ance instability existing in these Service-Oriented Sys-
tems and affecting dependability of both, the WSs and 
their clients.  
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Fig. 1. Performance statistics and probability distribution series: RT, RTT and RPT 

 

1. Response Time Statistics 
 

Our theoretical investigations reported in this pa-
per are based on real-live statistics gathered during 
long-term benchmarking of BASIS (Biology of Ageing 
E-Science Integration and Simulation System) Web 
Service [6] deployed at Newcastle University’s Institute 
for Aging and Health as part of our research into de-
pendability of WSs and SOA. 

BASIS WS has been invoked by the client soft-
ware placed in five different locations (in Frankfurt, 
Moscow, Los Angeles and two in Simferopol) every 
10 minutes during eighteen days starting from Apr, 11 
2009 (more than 2500 times in total). During each invo-
cation we fixed four times the stamps that helped us to 
measure two main delays contributing to the WS re-
sponse time (RT): network round trip time (RTT) and 
request processing time (RPT) by the Web Service. 

After processing statistics for the all clients located 
in different places over the Internet we found the same 
uncertainty tendencies. Thus, in the paper we report 
results obtaining only for the one. 

Performance trends of RPT, RTT and RT and its 
probability distribution series captured during eighteen 
days by Frankfurt client are shown at the fig. 1. Distri-
bution series were built with the help of Matlab  
histfit (x) function.  

It can be seen that RTT and especially RPT have 

significant instability that contribute together to the in-
stability of the total response time RT. Sometimes, de-
lays were twenty times (and even more) longer than 
their average values. Besides, we could see that about 
5% of RPT, RTT and RT are significantly larger than 
their average values. It is also clear that the probability 
distribution series of RTT has two extreme points and 
more than five percents of RTT have value that is 80ms 
(1/5) less than the average one. All these factors makes 
doubt about real distribution of overall response time 
and different delays contributing to it. 

 

2. Hypothesis Checking Technique 
 

In this section we provide results of hypotheses 
checking about distribution law of WS response time 
(RT) and its component values RPT and RTT. In our 
work we use the Matlab numeric computing environ-
ment (www.mathworks.com) and its Statistics Toolbox 
(a collection of tools supporting a wide range of general 
statistical functions, from random number generation, to 
curve fitting).  

The techniques of hypothesis checking consist of two 
basic procedures. First, values of distribution parameters 
are to be estimated by analyzing experimental sample.  

Second, the null hypothesis that experimental data 
have a particular distribution with certain parameters 
should be checked.  
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To check hypothesis itself we used the kstest func-
tion: [h, p] = kstest (x, cdf) performing a Kolmogorov-
Smirnov test to compare the distribution of random 
variable x (i.e. response time statistic) to the hypothe-
sized distribution defined by matrix cdf. 

The null hypothesis for the Kolmogorov-Smirnov 
test is that x has a distribution defined by cdf. The alter-
native hypothesis is that x does not have that distribu-
tion. Result h is equal to “1” if we can reject the hy-
pothesis, or “0” if we cannot reject that hypothesis. The 
function also returns the p-value which is the probability 
that x does not contradict the null hypothesis. We reject 
the hypothesis if the test is significant at the 5% level (if 
p-value less than 0.05). 

Bellow we present an example of checking a hy-
pothesis that the vector of ten samples x has the Expo-

nential distribution  
x

1y f x | e

  


. 

> x = [4;8;85;11;15;1;25;54;14;1] 
> mu=expfit(x) 
mu =   21.8000 
> [h,p] = kstest(x, [x expcdf(x, mu)]) 
h =    0 
p =    0.7574 

As we can see, we cannot reject that hypothesis 
(h=0) and the p-value is good enough. 

 

3. Goodness-of-Fit Analysis 
 

In our experimental work we have checked six hy-
potheses that experimental data conform Exponential, 
Gamma, Beta, Normal, Weibull or Poisson distribu-
tions. These checks were performed for the request 
processing time (RPT), round trip time (RTT) and re-
sponse time (RT) as a whole. Our main finding is that 
none of the distributions fits to describe the whole per-
formance statistics, gathered during 18 days. Moreover, 
the more experimental data we used the worse approxi-
mation were provided by all distributions! It means that 
in the general case an uncertainty existing in Service-
Oriented Architecture can not be predicted and de-
scribed by analytic formula.  

Our further work focused on finding the distribu-
tion law that fits the experimental data within limited 
time intervals. We have chosen two short time intervals 
with the most stable (from 0:24:28 of Apr, 12 until 
1:17:50 of Apr, 14) and the least stable (from 8:31:20 of 
Apr, 23 until 22:51:36 of Apr, 23) response time. 

The first time interval includes 293 request samples. 
Results of hypothesis checking for RPT, RTT and RT are 
given in Tables 2, 3 and 4 respectively. The p-value, re-
turned by the kstest function, was used to estimate the 
goodness-of-fit of the hypothesis. As it can be seen, Beta, 
Weibull and especially Gamma (1) distributions fit the 
experimental data better than others. Besides, RPT is ap-

proximated by these distributions better than RT and RTT.  

 
 

x
a 1 b

a
1y f x | a,b x e

b Γ a

  ,   (1) 

Typically, the Gamma probability density function 
(PDF) is useful in reliability models of lifetimes. This 
distribution is more flexible than the Exponential one, 
which is a special case of the Gamma function (when 
a=1). It is remarkable, that the Exponential distribution 
in our case describes experimental data worst of all. 
However, close approximation even by using the 
Gamma function can be achieved only within the lim-
ited sample interval (25 samples in our case). Moreover, 
RTT (and sometimes RT) can hardly be approximated 
even under such limited sample length.  

For the second time interval all six hypotheses 
failed because of the low confidence of the p-value (less 
than confidence interval of 5%). Thus, we can state that 
the deviation of experimental data significantly affects 
goodness of fit. However, we also should mention that 
the Gamma distribution also gave better approximation 
than other five distributions. 

 

4. Response Time Simulation 
 

In many theoretical and experimental studies of the 
performance and dependability of distributed queuing sys-
tems it is necessary to simulate response time. It can be 
easily done if we know a distribution law describing this 
random variable. However, we have to remember that in 
practice (in accordance with our current study and [4]) 
theoretical distributions can approximate the response time 
in service-oriented systems well only within a limited time 
frame. Nevertheless, two simulation approaches are possi-
ble. Firstly, RT can be directly simulated by using a par-
ticular distribution function (i.e. Gamma) with the certain 
parameters. Secondly, we can take into account the fact 
that RT = RPT + RTT, where RPT and RTT are independ-
ent variables. In this case we deal with so called “composi-
tion” (2) of two distribution laws f1 (RPT) and f2 (RTT). In 
this section we are trying to answer the question what 
simulation approach is more accurate. 

1 2

1 2

1 2

g(RT) g(RPT, RTT) f (RPT)f (RTT)

f (RPT)f (RT RTT)dRPT

f (RT RTT)f (RTT)dRTT








  

  

 





(2) 

As observed in the previous section, the Exponen-
tial distribution does not fit the stochastic processes 
happening in the Internet and Service-Oriented Systems. 

Within the limited time interval the Gamma distri-
bution gives the best approximation of RPT, RTT and 
RT as a whole. Thus, f1 (RPT) and f2 (RTT) can be 
Gamma functions with individual parameters.  
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To simulate g (RT) directly with the help of the 

Gamma distribution we should fit its parameters beforehand 
in a way similar to that described in section 4.2. Matlab 
function gamfit (x) can be used here. Another Matlab func-
tion gamrnd (a,b) that generates vector of gamma random 
numbers with parameters a and b can be used to simulate 
RT. An accuracy of simulated RT as compared to actual data 
obtained experimentally can be evaluated by use of the 
kstest2(x, y) function. This function performs a two-sample 
Kolmogorov-Smirnov test to compare the distributions of 
values in the two data vectors x and y. The null hypothesis 
for this test is that x and y have the same continuous distribu-
tion. The whole sequence of Matlab commands implement-
ing the first simulation approach is as it shown bellow. 

> RTpar = gamfit(RT) 
> y = gamrnd(RTpar(1),RTpar(2),25,1) 
> [h,p] = kstest2(y,RT) 
The second simulation approach composing RPT 

and RTT can be easily implemented in the Matlab envi-
ronment as well: 

> RPTpar = gamfit(RPT) 
> RTTpar = gamfit(RTT) 
> x = gamrnd(RPTpar(1),RPTpar(2),25,1) 
    + gamrnd(RTTpar(1),RTTpar(2),25,1) 
> [h, p] = kstest2(x,RT) 

Here, RT, RPT and RTT are vectors of the first 25 
samples of the response time, the request processing 
time and the round trip time gathered experimentally 
starting from 0:24:28 of Apr, 12. 

Average p-values corresponding to the first and the 
second simulation approaches are 0.69 and 0.57. They 
were estimated after performing thirty rounds of random 
generation. This shows that both simulation approaches 
can be used, however the first one provides better ap-
proximation to the experimental data. 

Conclusion 
 

Our main finding is that none of the distributions fits 
to describe the long-termed performance statistics. The 
more experimental data we used the worse approximation 
were provided by all distributions. It means that, in the 
general case, an uncertainty existing in SOA can not be 
predicted and described by analytic formula. According to 
section 3, goodness of fit was significant only within short 
time intervals which include no more than 20-30 samples.  

Based on our experimental investigation and 
mathematical analysis reported in the paper we can state 
that RPT has higher instability than RTT, however, in spite 
of this RPT can be better represented using a particular 

Table 1 
RPT Goodness-of-fit approximation 

Approximation goodness-of-fit (p-value) Number of 
requests Exp. Gam. Norm. Beta Weib. Poiss. 
293 (all) 7.8E-100 1.1E-06 9.5E-63 9.3E-25 2.3E-11 4.9E-66 
First half 1.1E-99 0.0468 1.2E-62 0.0222 0.00023 1.1E-65 
Second half 1.3E-47 0.2554 5.1E-30 0.2907 0.0729 1.6E-31 
First 50 6.9E-18 0.2456 2.3E-11 0.2149 0.0830 7.5E-12 
First 25 2.3E-09 0.9773 5.1E-06 0.9670 0.5638 2.9E-06 
Second 25 2.5E-09 0.2034 5.2E-06 0.1781 0.0508 3.1E-06 

 

Table 2 
RTT Goodness-of-fit approximation 

Distribution’s goodness-of-fit (p-value) Number of 
requests Exp. Gam. Norm. Beta Weib. Poiss. 

293 (all) 2.1E-94 5.1E-30 4.4E-59 7.0E-39 5.0E-38 7.5E-85 
First half 6.5E-52 2.6E-17 9.1E-33 1.1E-16 2.6E-19 1.0E-45 
Second half 5.0E-44 2.5E-11 1.8E-27 4.6E-16 4.6E-13 8.1E-40 
First 50 8.1E-18 1.9E-04 2.1E-11 2.9E-04 2.0E-07 2.1E-15 
First 25 2.7E-09 0.004 4.2E-06 0.0043 0.0133 4.6E-08 
Second 25 1.6E-09 6.0E-04 4.0E-06 5.4E-04 3.5E-04 4.8E-08 

Table 3 
RT Goodness-of-fit approximation 

Distribution’s goodness-of-fit (p-value) Number of 
requests Exp. Gam. Norm. Beta Weib. Poiss. 

293 (all) 1.6E-96 1.8E-14 4.4E-60 4.4E-29 1.0E-19 4.0E-67 
First half 2.6E-52 0.0054 9.4E-33 0.0048 1.1E-06 2.6E-35 
Second half 1.0E-45 9.8E-08 1.9E-28 5.2E-15 9.1E-09 2.2E-32 
First 50 6.1E-18 0.1159 2.1E-11 0.1083 0.1150 6.1E-12 
First 25 2.4E-09 0.8776 4.2E-06 0.8909 0.7175 2.7E-06 
Second 25 1.9E-09 0.0843 4.5E-06 0.0799 0.0288 2.8E-06 
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theoretical distribution. At the same time the probability 
distribution series of RTT has unique characteristics mak-
ing it really difficult to describe them theoretically. Among 
the existing theoretical distributions the Gamma, Beta and 
Weibul capture our experimental response time statistics 
better than others.  

The Matlab numeric computing environment pro-
vides powerful toolboxes and functions for statistical 
analysis of the experimental data in the types of the ex-
periments we have been conducting. However, improving 
the prediction of WS performance needs more sophisti-
cated procedures for experimental data processing (e.g. 
using dynamic time slots, rejecting some extreme samples, 
etc.) beforehand. 

Our work supports the claim that dealing with the un-
certainty inherent in the very nature of SOA and WSs, is one 
of the main challenges in building dependable SOA. Uncer-
tainty has two consequences. First, it is difficult to assess the 
dependability and performance of services, and hence it is 
difficult to choose between them and gain confidence in 
their dependability. Secondly, it is difficult to execute fault 
tolerance mechanisms in a (close to) optimal manner, since 
too much data is missing to make good decisions and exploit 
all features of the dependability mechanisms.  

Uncertainty of the  Internet and service performance 
instability are such that on-line optimization of redundancy  
can  make  a  substantial  difference  in perceived depend-
ability, but currently there are no good tools available 
for the company to carry out such optimisation in a rigor-

ous manner. We believe that uncertainty can be resolved 
by two means: uncertainty removal through advances in 
data collection and uncertainty tolerance through smart 
algorithms that improve decisions despite lack of data (e.g., 
by extrapolation, better mathematical models, etc.). 
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ВИЗНАЧЕННЯ ЗАКОНІВ РОЗПОДІЛУ ЗАТРИМОК, СКЛАДАЮЧИХ ЧАС ВІДКЛИКУ WEB-СЛУЖБ 
А.В. Горбенко 

У статті представлено результати пошуку законів розподілу, що описують час відклику Web-служб та його 
складові. Теоретичні дослідження базовані на реальній статистиці. Представлені результати перевірених гіпотез. 
Описані підходи до моделювання симуляції часу відклику. Обгрунтовано експериментальне дослідження і про-
ведений математичний аналіз часу відклику. Визначено, що затримки, які виникають у Сервіс-Орієнтованих Сис-
темах мають дуже невизначені статистичні характеристики, що значно ускладнюють їхнє представлення впро-
довж тривалого часу за допомогою теоретичних законів розподілу випадкової величини. 

Ключові слова: Web-служба, сервіс-орієнтована архітектура, час відклику, закон розподілу. 

ОПРЕДЕЛЕНИЕ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ ЗАДЕРЖЕК,  
СОСТАВЛЯЮЩИХ ВРЕМЯ ОТКЛИКА WEB-СЛУЖБ  

А.В. Горбенко 
В статье представлены результаты поиска законов распределения времени отклика и других временных 

характеристик Web-служб. Теоретические исследования основаны на реальной статистике. Представлены 
результаты проверенных гипотез. Описаны подходы к моделированию симуляции времени отклика. Обос-
новано экспериментальное исследование и проведен математический анализ времени отклика. Установлено, 
что задержки, возникающие в Сервис-Ориентированных Системах имеют высокую степень неопределенно-
сти статистических характеристик, что существенно затрудняет их описание с помощью теоретических за-
конов распределения случайной величины.  

Ключевые слова: Web-служба, сервис-ориентированная архитектура, время отклика, закон распределения. 
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