- ють десятки і навіть сотні тисяч високопродуктивних нащадків. У результаті роль спадковості плідників у генетичному поліпшенні молочних порід великої рогатої худоби сягнула $90-95 \%$, у вівчарстві - $70-80$.

Таким чином, плідники-поліпшувачі у прямому розумінні стали золотим фондом тваринництва. Продуктивність 17321 дочки бугая Лінкольна 384785 голштинської породи становила 9416 кг молока, $4,0 \%$ жиру та 377 кг молочного жиру.

Творчий внесок автора глибокого заморожування сперми плідників сільськогосподарських тварин I.B. Смирнова у біологічну науку має неоціненне значення і залишається основним методом відтворення великої рогатої худоби, овець, свиней та інших видів тварин у третьому тисячолітті більш ніж у 100 країнах світу.

Україиська академія аграрних наук Iнститут розведення і генетики тварин УААН

УДК 636.453 .53
Н.3. ЖИЛЬЦОВ, А.Д. СУБОТИН, А.С. ГОЛУББ, А.В. ЧИЧИЛОВ

УСОВЕРЩЕНСТВОВАНИЕ ТЕХНОЛОГИИ ГЛУБОКОГО ЗАМОРАЖИВАНИЯ СЕМЕНИ БЫІКА

В последние годы исследователи в области глубокого замораживания семени сельскохозяйственных производителей направили свои усилия на разработку методов замораживания семени барана, хряка, жеребца, в то же время совершенствование метода замораживания семени быка, особенно в технологии разбавления и охлаждения (синтетические среды, эквилибрация), просто прекратилось.

Отсюда среда ГЛЦЖ (В.Ф. Турбин, 1967) до сих пор является основной для разбавления и замораживания семени быка.

Q Н.3. Жильцов, А.Д. Суботин, А.С. Голуо̃ь, А.В. Чичилов, 2001
Розведения і генетика тварин. 2001. Вип. 34
10

Дело в том, что почти 30 лет ученые усиленно работали в области разработки технологических линий по промышленной расфасовке семени быков в пластиковые соломинки или облицованные гранулы (французская, башкирская, байсогольская, харьковская технологии).

Однако исследователи в области замораживания семени барана, хряка, жеребца испытали множество веществ, которые позволили, в конце концов, разработать методы замораживания семени указанных выше производителей.

Интересно, что в средах для указанных производителей успешно использовали динатриеву соль этилендиаминтетрауксусной кислоты (хелатон), которая в 1972 г. на ЦСИО была введена в среду для замораживания семени быка. Она давала прекрасные результаты по активности и живучести оттаяного семени, однако оплодотворяемость коров и телок от такого семени снизилась. Поскольку результаты работы были признаны неправомерными с определенными оргвыводами, хелатон, естественно, был удален из сред, а сам препарат стал запретным для семени быка почти четверть века.

Однако этот же хелатон позволил решить проблему глубокого замораживания семени хряка, а комплексонаты магния, меди, кальция и цинка практически дали возможность получать приемлемые для практики результаты ягнения от глубокозамороженного семени барана.

Правда, в $80-\mathrm{x}$ годах В.К. Милованов и Л.С. Жильцова (1985) пытались ввести в среды для быка указанные выше комплексонаты и получили положительные результаты в колхозе "Сельская жизнь" Тульской области, но дальше указанные авторы не пошли, поскольку стресс от хелатона все еще давлел над сознанием чиновников Минсельхоза СССР.

В 1998 г,в своих исследованиях по тематике отдела биологии А.В. Чичилов обнаружил повышенную нуклеазную активность в семени быка за счет желтка куриного яйца, чего он не обнаружил в семени хряка и барана, что, несомненно, можно объяснить присутствием в средах для этих видов хелатона и комплексонатов. Эти исследования проведены по теме, свя-

- занной с попытками трансформирования спермиев сельскохозяйственных животных.

В последние годы появились работы и целые кандидатские диссертации, посвященные трансформированию сперматозоидов (Багиров Вугар, 1997; Щит Т., 1998), в которых показано, что глубокое замораживание может трансформировать ДНК живчиков.

Такие предпосылки заставляют исследователей искать пути снижения в синтетической среде нуклеазной активности за счет замены полностью или частично желтка куриного яйца вытяжкой из желтка или лецитина желтка с использованием холина. А поскольку в последние годы появился препарат бетаин, который получают из сахарной свеклы по технологии компании "Финшуга" (это вещество превращения холина в митохондриях клетки), есть возможность ввести это вещество в синтетические среды для семени быка, как источник метильных групп. Бетаин имеет тесную связь с обменом метионина, он на $10-15 \%$ сохраняет метионин за счет прекращения изьятия метильных групп из этой аминокислоты, и следовательно, он как бы выступает защитником метионина при процессах метилирования в живой клетке.

Кроме того, бетаин является регулятором осмоса при стрессовых процессах и обладает определенным антибактериальным воздействием.

Таким образом, можно констатировать, что холин и бетаин могут с успехом использоваться в синтетических средах для семени быка как криопротекторы и защитники обменных процессов в живчиках при глубоком замораживании. В связи с этим, несомненно, большой интерес вызывает возможность использования в синтетической среде в качестве неэлектролитов аминокислот - лизина, метионина и глицина. Причем эти аминокислоты можно ввести на фоне уже используемых углеводов (глюкоза, лактоза, сахароза).

Целью наших исследований являлось дальнейшее совершенствование технологии глубокого замораживания семени быка и повышение результативности осеменения коров и те-

лок замороженным семенем. Для достижения поставленных целей планировалось решить следуюшую задачу: разработать новую синтетическую среду для замораживания семени быка, которая бы обеспечила снижение нуклеазной активности в семени перед замораживанием, повышение биологической полноценности живчиков и их оплодотворяющей способности.

Определение нуклеазной активности в семенной плазме и суспензии сперматозоидов путем электрофореза в агаре дало интересные результаты. Например, в среде 199 и 3\% цитрата натрия со спермия хряка в течение двух часов не было замечено следов проявления нуклеазной активности. В свежей семенной плазме быка нуклеазная активность начинает проявляться после одночасовой инкубации, и в разбавленном семени хряка средой для замораживания семени активность нуклеаз также проявляется после часа инкубации. А вот в семенной плазме барана и быка наблюдалась очень высокая нуклеазная активность уже в первую минуту инкубации. В опытах замечено, что активность нуклеаз повышает добавление желтка куриного яйца в среду для замораживания и сделан вывод о том, что при отсутствии в средах реагентов, снижающих нуклеазную активность (тот же хелатон, как в среде для хряка), желток может быть опасным для хромосомальной ДНК живчиков с точки зрения её деградации. Активность желтка куриного яйца может привести к деградации определенной части ДНК сперматозоида.

В данной работе наряду с определением нуклеазной активности раствора куриного желтка и среды для замораживания в целом были изучены также активность амилазы, пероксидазы, протеазы, каталазы и липазы (табл. 1).

Было установлено, что амилазная активность среды находится на одном уровне с активностью семенной плазмы. Активность липазы отсутствовала как в одной, так и в другой среде. Активность пероксидазы и протеазы отмечалась в среде для замораживания и отсутствовала в семенной плазме. Наибольшее различие наблюдалось по активности нуклеаз.

В соответствии с планом работ по использованию новых

1. Определение ферментативной активности стандартной среды для замораживания семени быка и семенной плазмы

Показатели	Семенная плазма	Среда для замораживания
Амилаза	40 ед. В	40 ед. В
Пероксидаза	Отсутствует	$4,2 \mathrm{mг} /$ мл
Протеаза	Отсутствует	$1,0 \mathrm{mг} /$ мл
Каталаза	0,02 ед.	-
Липаза	Отсутствует	Отсутствует
Нуклеаза	5%	90%

синтетических сред для замораживания изучалась нуклеазная активность в средах с добавками лактозы, холин-хлорида, комплексонатов меди (табл. 2). Было установлено, что наименьшая степень нуклеазной активности среды наблюдалась в случае добавок комплексонатов меди и холин-хлорида.

Совершенствование синтетической среды проводилось путем введения в состав новых компонентов, посредством установления биологического уровня исследуемых аминокислот методами встречных рядов и треугольника. Расчетные изотонические растворы: для лизина - $4,8 \%(\mathrm{~A})$; для метионина $3,9 \%$ (B); для бетаина - 4,4\% (C).

Из 20 опытов по определению живучести в смесях по методу треугольника с интервалом 20% изотонических растворов указанных выше аминокислот установлено, что смеси изотонических растворов А, В и С наиболее благоприятны для живчиков быка в 12 -й и 17 -й пробирках (табл. 3).
2. Нуклеазная активность стандартной среды для замораживания семени быка с добавками

Иигредиенты	Деградация контрольного образца ДНК, \%
Лактоза	94
Лактоза + холин 0,2 мл	64
Комплексонат меди	50
Комллексонат меди + холин 0,2 мл	3
Комплексонат меди + холин 0,1 мл	20

3. Соотношение растворов A, В и С в пробирках с оптимальной живучестью

Номер пробирки	А	В	C
12	20	60	20
17	0	80	20

Итак, после разбавления семени быка средой, состоящей из лизина, метионина и бетаина при указанных в таблице соотношениях, сохраняется подвижность живчиков в пределах 50%, в остальных же 19 сочетаниях семя гибнет немедленно после разбавления.

Если считать пробирки 12 -ю и 17 -ю синтетическими средами, то их состав представлен в табл. 4.

4. Состав сред из аминокислот на 100 мл воды

Ингредиенты	№ $\mathbf{1 2}$ (r)	№ $\mathbf{1 7}$ (r)
Лизин	0,96	-
Метионин	2,34	3,12
Бетаин	0,88	0,88

Выявленные зоны биологического уровня на треугольнике с интервалом 20% позволили определить живучесть семени по схеме треугольника с интервалом 10%. Как показали исследования живучести в пробирках 12 -й и 17 -й по 10%-му треугольнику, биологические уровни изотонических растворов исследуемых аминокислот, по всей видимости, лежат в пределах от 0 до 10%.

Исходя из вышесказанного, были предприняты попытки смоделировать синтетическую среду на основе комплексонатной среды Л.С. Жильцовой (1986) за сғет снижения уровня изотоничности (табл. 5).

Данные табл. 6 свидетельствуют, что создание изотонии среды за счет частичной замены комплексонатов приводит к негативным результатам по подвижности семени после оттаи-
5. Соотношение уровня изотоничности среды комилексонатной с вариациями изотонических растворов А, В и С е пределах уровня от 10% и ниже

Номер пробирки	Уровень изотопического раствора, \%				Подвижность		
	комплексонатная среда	лизии	$\begin{aligned} & \text { метио- } \\ & \text { нин } \end{aligned}$	бетаин	$\begin{array}{\|l\|} \text { pasбав- } \\ \text { ление } \end{array}$	эквилибрация	$\begin{aligned} & \text { оттаи- } \\ & \text { вание } \end{aligned}$
1	80	3	10	7	0,6	0,6	0,2
2	80	2	10	8	0,6	0,6	0,25
3	90	2	4	4	0,6	0,6	0,25
4	90	1	5	4	0,6	0,6	0,25
Контроль	100	0	0	0	0,8	0,8	0,5

Примечание: Подвижность неразбавленного семени - 0,8 .
вания в сравнении с контролем. В следуюшем опыте мы пытались смоделировать среду, исходя из объемных введений незначительного количества исследуемых аминокислот А, В и С.

Проведенные исследования дали возможность нам смоделировать синтетическую среду (новую), состоящую из комплексонатов, аминокислот и витаминов. Замораживание семе-
6. Живучесть семени быка при добавлении к комплексонатной среде разных уровней изотонических растворов аминокислот A, B и С

Номер npoбирки	Объемное соотношение з пробирках, мл	Активность, \%			
		после раз-	после эквилиорации	$\begin{gathered} \text { послл } \\ \text { огтаин } \\ \text { ваиия } \end{gathered}$ вания	
1	$0,9 \mathrm{~K}+0,1 \mathrm{~A}$	80	80	40	20
2	$0,9 \mathrm{~K}+0,8 \mathrm{~B}$	80	80	40	20
3	$0,8 \mathrm{~K}+0,1 \mathrm{~A}+0,1 \mathrm{~B}$	80	80	40	20
4	$0,7 \mathrm{~K}+0,1 \mathrm{~A}+0,1 \mathrm{~B}+0,1 \mathrm{C}$	70	80	40	En
5	$0,85+0,05 \mathrm{~A}+0,05 \mathrm{~B}+0,05 \mathrm{C}$	C 80	80	50	30
6	$0,8 \mathrm{~K}+0,05 \mathrm{~A}+0,1 \mathrm{~B}+0,05 \mathrm{C}$	80	80	50	40
7	1,0K	80	80	50	20

Прияечание: После шести часов инкуобирования оттаявшего семени только в 5 -й и 6-й пробирках были подвижные живчики (En).
7. Качество семени быка, замороженного и оттаявшего в разных средах

Номер среды	Подвижность после раз- бавления, \%	Подвижность после оттаи- вания, \%	Выживае- мость, ч	Сохранность акросом, \%
3 (лактоза+ комплексонаты) 5 (сахароза+ комплексонаты) 1 контрольная (лактоза)	80	$55-60$	10,0	84,1

ни в разработанной среде имеет определенное преимущество перед стандартной лактозной средой по активности живчиков после оттаивания и особенно по скорости движения (большее число живчиков в дозе для осеменения с суперактивностью, а также по живучести оттаявшего семени при температуре тела). Живучесть семени больше в опытной среде на два часа по сравнению с контролем (лактозная среда).

Более высокая сохранность акромального чехлика живчиков после замораживания в новой среде также свидетельствует о более высоких протекторных свойствах новой среды.

Нами также разработаны для замораживания семени быка среды (табл. 7) на основе комплексонатной среды с добавлением сахаров (лактоза, сахароза).

Из данных табл. 7 видно, что лучшая подвижность, выживаемость и сохранность акросом после замор"аживания и оттаивания были в сахарозной среде с комплексонатами. В новой среде с аминокислотами заморожено 150 доз семени, а также 100 доз в среде № 5. Указанное семя использовалось в производственной проверке оплодотворяющей способности в хозяйствах Подольского района Московской области.

От первого осеменения спермой, замороженной в опытной среде, получена стельность 55%, в контроле - 45%, и хотя разница статистически не достоверна ($\mathrm{n}=30$), полученные результаты вселяют надежду на перспективность избранного направления по совершенствованию технологии глубокого замораживания семени быка.

