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SURFACE ROUGHNESS MODELING OF CBN HARD STEEL TURNING 
 

Study in the paper investigate the influence of the cutting conditions parameters on surface 

roughness parameters during turning of hard steel with cubic boron nitrite cutting tool insert. For the 
modeling of surface roughness parameters was used central compositional design of experiment and 

artificial neural network as well. The values of surface roughness parameters Average mean arithmetic 

surface roughness (Ra) and Maximal surface roughness (Rmax) were predicted by this two-modeling 
methodology and determined models were then compared.  The results showed that the proposed 

systems can significantly increase the accuracy of the product profile when compared to the 

conventional approaches. The results indicate that the design of experiments modeling technique and 
artificial neural network can be effectively used for the prediction of the surface roughness parameters 

of hard steel and determined significantly influential cutting conditions parameters.  
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1. Introduction 

To increase quality of finished products for in manufacturing processes and 

systems is defined by how closely the finished product fit to certain specifications, 

including dimensions and surface roughness quality. Surface roughness quality is 

defined by the combination of surface finish, surface texture, and surface roughness 

parameters. The commonest parameters for determining surface roughness quality 

are Average mean arithmetic surface roughness (Ra) and Maximal surface 

roughness (Rmax), Quintana etc. 

Manufacturing processes do not allow to achieve the theoretical surface 

roughness due to effects appearing on machined surfaces and mainly generated by 

deficiencies and imbalances in the machining process. Due to these influences to 

know the surface quality, it is necessary to employ theoretical models making it 

feasible to do predictions influence parameters in function of response parameters 

Sivarao etc, Mankova etc. 

Recently, some investigations in applying the basic artificial intelligence 

approach to model of machining processes, have appeared in the literature. There 

concludes that the modeling of surface roughness in machining processes has 

mainly used Artificial Neural Networks and fuzzy set theory Choudhary etc 

Grzenda etc. Average mean arithmetic surface roughness, Ra using artificial neural 

network was predicted in Balic, Korosec, Azouzi, M. Gullot..  

Accurate modeling and prediction of surface roughness by computer vision in  
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turning operations using an adaptive neuro-fuzzy inference system was presented in 

study Ho etc. Research of the influence of machining parameters combination to 

obtain a good surface finish in turning and to predict the surface roughness values 

using fuzzy modeling is presented in Rajasekaran. Also, may notice that the neural 

network used in the study, where the enabling resolution of the problem that is 

difficult to define and mathematically model. This can be seen in the work where 

the neural network was based on the face milling machining processes, where is 

aimed to produce the relationship of cutting force versus instantaneous angle of 

tool rotation Savković etc. Application of fuzzy logic and regression analysis for 

modeling surface roughness in face milling was in paper Kovac etc. 

In this paper, cutting speed, feed and depth of cut as machining regime 

parameters were selected for input parameters. For modeling of surface roughness 

parameters Ra and Rmax used was Response surface methodology and artificial 

neural network models were developed. 

2. Experimental procedure and material 

Machine tool for machining tests was the universal lathe. In the study was used 

interchangeable insert of CBN (cubic boron nitrite) CNMA 120404 ABC 25/F 

producer ATRON Germany. For this insert sed was appropriate insert holder for 

external processing PCLNR 25 25 M16. 

The cutting tips was according to DIN 4983 the geometry, as follows: the 

shape of the plate C → rhomb; the rake angle N → = 0, C → = 7; tolerance class 

M; Type of tile → with opening A, W and G; length of cutting blade → 12.7 mm 

(12); cutting edge thickness → 4.76 mm (04); radius of tool tip → 0.4 mm (04). All 

inserts have a rake angle (0°). 

During the study variation of the input model parameters (cutting regime) was 

performed according central compositional factorial experimental design in 5 

levels. This mean values for all input parameters between the two adjacent levels 

was the geometric mean of these values. Selected levels of input factors and coded 

values are shown in Table 1. 

Workpiece material was steel Č3840 (90MnCrV8). Before the experimental 

performance the workpiece was, machined to cross-section of Ø34 mm and length 

500 mm. Before machining start it was necessary to remove a certain layer of 

material in order to avoid throwing-ovality and the results were more reliable. The 

length of the bar of 500 mm, was divided into 24 fields with a length of 10 mm on 

which the longitudinal cutting was performed. Each field on workpiece was 

planned for the measurement of one experimental point. Workpiece was than 
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thermally whose hardness after heat treatment was 55 HRC. Cutting without the 

presence of cooling and lubricating agents was provided 

 
Table1 – Levels of experimental input factor 

Factor 

Levels 

Cutting speed 

v (m/min) 

Feed 

f (mm/rev) 

Dept of cut 

a (mm) 

Highest    +1.41 180 0,250 0,70 

High        +1 160 0,200 0,50 

Middle      0 120 0,100 0,22 

Low         -1 90 0,050 0,10 

Lowest    -1.41 80 0,045 0,07 

 

Measuring the surface roughness parameters with the Talysurf 6 measuring 

device was done. After processing by a computer, the results, was printing or 

writing on screen. The personal computer was connected to the Talysurf-6 

measuring device using a serial connection COM-3. Instead of the printer, a 

computer was connected with a special adapter with a measuring machine 

Talysurf 6. The basic parts of the measuring device Talysurf-6 are shown in 

Figure 1. 

 

 

Figure 1 – Surface roughness measurement system Talysurf-6 connected with computer 

 

The measured was values of surface roughness parameters: Ra, Rmax. The 

measurement results of these parameters and estimated values by central 

compositional three factorial models are given in Table 2. 
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Table 2 – The measurement and modeled results - Input parameters 

No. 

Factor Ri measured  
Ri RSM 

Model 

Ri Neural network 

v 

[m/min] 

f 

[mm/rev] 

a 

[mm] 

Ra 

[µm] 

Rmax 

[µm] 

Ra 

[µm] 

Rmax 

[µm 

Ra 

[µm] 

Rmax 

[µm 

1 90 0,05 0,10 0.67 3.9 0.68 3.80 0.66940 3.9250 

2 160 0,05 0,10 0.59 3.4 0.63 3.63 0.61679 3.2999 

3 90 0,20 0,10 0.79 4.2 0.90 4.68 0.76891 4.4901 

4 160 0,20 0,10 0.69 3.6 0.84 4.47 0.90851 2.9274 

5 90 0,05 0,50 0.62 3.5 0.75 4.12 0.63529 3.4790 

6 160 0,05 0,50 0.71 4.4 0.70 3.94 0.70234 4.3468 

7 90 0,20 0,50 0.78 3.9 1.00 5.08 0.77812 3.8940 

8 160 0,20 0,50 0.69 3.8 0.93 4.85 0.66813 3.8180 

9 120 0,10 0,22 0.93 4.7 0.79 4.29 0.88270 3.9597 

10 120 0,10 0,22 0.88 3.9 0.79 4.29 0.87679 3.9147 

11 120 0,10 0,22 0.83 4.7 0.79 4.29 0.87099 3.8716 

12 120 0,10 0,22 0.9 4.4 0.79 4.29 0.86532 3.8309 

13 80 0,10 0,22 1.02 5.6 0.83 4.43 1.02192 5.6070 

14 180 0,10 0,22 0.91 4.6 0.76 4.16 0.93119 4.63908 

15 120 0,045 0,22 0.87 4.7 0.68 3.81 0.86870 4.7078 

16 120 0,25 0,22 1.31 6.7 0.96 4.92 1.31268 6.6933 

17 120 0,10 0,07 0.58 3.5 0.74 4.05 0.58573 3.4854 

18 120 0,10 0,70 0.76 4.2 0.86 4.55 0.86198 4.7684 

19 80 0,10 0,22 1.03 5 0.83 4.43 1.022 5.5707 

20 180 0,10 0,22 0.92 5 0.76 4.16 0.9461 4.7089 

21 120 0,045 0,22 0.54 3.1 0.68 3.81 0.6721 3.7334 

22 120 0,25 0,22 1.21 6.6 0.96 4.92 1.3070 6.6211 

23 120 0,10 0,07 0.59 3.5 0.74 4.05 0.5851 3.5764 

24 120 0,10 0,70 0.76 4.2 0.86 4.55 0.8574 4.7724 

 

In table 3 are given results of dispersion analyses of implementation of central 

composition factorial experimental plan: adequacy of models and significance of 

input parameters. 
 

Table 3 – Adequacy of models and significance of parameters 

Model adequacy 
Ra Rmax 

Fa=4,2921 Fa=3,0585 

Significance 

of parameters 

Fro 96,68 3564,19 

Fr1 (v) 1,55 (*) 0,59 (*) 

Fr2 (f) 24,00 12,08 

Fr3 (a) 3,33 (*) 1,82 (*) 

Table values for significance: >  = 6,61; For adequacy: <  = 4,47; (*) 

No significant parameters 
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3. Artificial neural network modelling 

Artificial neural network (ANN) modeling method is becoming useful as the 

alternative approach to conventional techniques, or as the component of integrated 

systems. It is an attempt to predict, within a specialized software, the multiple 

layers of a number of elementary units called neurons. The MATLAB software, 

Neural Network Toolbox function, was used to create, train, validate, and predict 

the different ANNs reported in this research. 

In this work, one of the most popular feed-forward networks was selected. 

This network is a multi-layer architecture proving to be an excellent universal 

approximation of nonlinear functions. The feed-forward neural network was trained 

by TRAINLM algorithms. The TRAINLM is a network training function that 

updates weight and bias values to Levenberg-Marquardt optimization.  

Learning is a process by which the free parameters of the neural network are 

adapted through a continuous process of simulation by the environment in which 

the network is embedded. The learning function can be applied to individual 

weights and biases within the network. The LEARNGDM learning algorithms in 

feed-forward networks are used to adapt networks. Gradient descent method 

(GDM) was used to minimize the mean squared error between the network output 

and the actual error rate. It trains the network with gradient descent with the 

momentum back-propagation method. The back-propagation learning in feed-

forward networks belongs to the real of supervised learning, in which the pairs of 

input and output values are fed into the network for many cycles, so that the 

network 'learns' the relationship between the input and the output. 

For this study, feed-forward network was selected since this architecture 

interactively creates one neuron at a time. This is an optimization procedure based 

on the gradient descent rule which adjusts the weights of the network to reduce the 

system error is hierarchical. The network always consists of at least three layers of 

neurons: the input, output, and middle hidden layer neurons. The input layer has 

inputs, which are: v, the cutting speed (m/min); f, the feed (mm/rev); and a, the 

depth of cut (mm). The outputs are the values of machined surface roughness 

parameters: arithmetic mean roughness Ra and the maximal roughness high Rmax. 

These parameters were set to be modeled by the artificial neural network 

performance. Characteristic of the used neural network: the number of hidden 

layers is 12, the number of iterations is 100 and the number of neurons in the 

hidden layer is 20.  

In this study, a part of the experimental data was used for training and the 

remaining data was used for testing the network. Each input has an associated 

weight that determines its intensity. The neural network can be trained to perform 

certain tasks where the data is fed into the network through an input layer.  
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This is processed through one or more intermediate hidden layers and finally 

it is fed out to the network through an output layer as shown in Fig. 2. It must be 

highlighted that the best network architecture is reached by trial and error after 

considering different combinations of the number of neurons in the hidden layer, 

the number of hidden layers, spread parameter, and learning rate, depending on the 

type of neural network being used. 

Figure 2 – Network input and output layer 

 

3. Results and discussions 

Equations for surface roughness modeling by design of experiment 

determined by central compositional plan.  

 

 =2,5258  , (1) 

 

  =9,5757 .  

 

As mentioned before, neural network modeling was used for analysis and 

optimization of surface roughness in turning process. The obtained results of neural 

network model are given in the Table 5, side by side with the obtained 

experimental results. For reduction of a deviation, is needed to increase the number 

of inputs. 

Calculation of percental deviation E for measured and model surface 

roughness values was performed according next formula: 

 %100
exp

exp





Ri

RiRi
E

m
 ,  

where are: Riexp- experimental value, Rim- model value. 

Calculated percental deviation for first 18 experimental points are for Ra 

E=4.30 and for Rmax E=5.19.    



ISSN 2078-7405. Резание и инструменты в технологических системах, 2018,  выпуск 89 

84 

Table 5 – Experimental values and values obtained by neural network with 

percentage deviation for 6 testing points   

 

Deviation of surface roughness parameters of RSM and neural network 

models is on Figure 3, shown. 

Figure 3 – Deviation of surface roughness parameters models 

 

Any change in the cutting speed leads to a slowly corresponding change in the 

value of surface roughness. The cutting speed has a small and decreasing effect, 

Figure 5. Influence of feed on value surface roughness is higher than the cutting 

speed effect. Increasing feed increase surface roughness, Figure 6. Depth of cut at 

least influences the surface roughness values slightly, Fig 7.  

 

No. 

Factor 
Ri - experimenal  

roughness 

Ri - modeled  

roughness 

v 

[m/s] 

s 

[mm/rev] 

a 

[mm] 

Ra 

[µm] 

Rmax 

[µm] 

Ra 

[µm] 

Rmax 

[µm] 

1 81 0.1 0.22 0.83 4.43 1.022 5.5707 

2 182 0.1 0.22 0.76 4.16 0.9461 4.7089 

3 121 0.045 0.22 0.68 3.81 0.6721 3.7334 

4 122 0.25 0.22 0.96 4.92 1.3070 6.6211 

5 123 0.1 0.07 0.74 4.05 0.5851 3.5764 

6 119 0.1 0.7 0.86 4.55 0.8574 4.7724 

 Average deviation % 7.13 7.97 
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Figure 4 – The surface roughness (Ra, Rmax) versus cutting speed 

 

Figure 5 – The surface roughness (Ra, Rmax) versus feed 
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Figure 6 – The surface roughness (Ra, Rmax) versus the cutting depth 

 

Any change in the cutting speed leads to a slowly corresponding change in the 

value of surface roughness. The cutting speed has a small and decreasing effect, 

Figure 4. Influence of feed on value surface roughness is higher than the cutting 

speed effect. Increasing feed increase surface roughness, Figure 5. Depth of cut at 

least influences the wear on the flank surface and surface roughness values slightly. 

4. Conclusion 

Intelligent optimization techniques give the influence of cutting conditions on 

machining surface quality during turning hard material, are investigated through 

experimental verification. The investigation results confirm the highly consent of 

experimental research and intelligent techniques modeling. The intelligent 

optimization techniques and experimental results show some good information 

which could be used by future researches for optimal control of machining 

conditions. This paper has successfully established neural network model, for 

predicting the workpiece surface roughness parameters. Figures 4 and 5 shows the 

compared predicted values obtained by experiment and estimated by neural 

network shows a good comparison with those obtained experimentally. The 

average deviations of models are checked and are found to be adequate. The model 

adequacy can be further improved by considering more variables and ranges of 

parameters. 
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