А.Н. АНДРЕЕВ, А.Г. ЛАЗАРЕНКО, канд. физ.-мат. наук

ФИЛЬТРАЦИЯ, МОДУЛЯЦИЯ И ГЕНЕРАЦИЯ ИЗЛУЧЕНИЯ С ПОМОЩЬЮ ИНТЕРФЕРОМЕТРА БЕГУЩЕЙ ВОЛНЫ

Получение высокочастотной модуляции ($\Gamma\Gamma u$, $T\Gamma u$ диапазона) требует применения активных быстродействующих устройств соответствующей частоты и сопровождается определёнными техническими трудностями. Но существует возможность получения таких высоких частот модуляции иным методом – путем интерференции бегущих волн. Примером подобной модуляции можно считать межмодовые биения в обычном лазерном резонаторе (типа Фабри – Перо), практическое же применение ее затруднено в этом случае большим количеством генерируемых мод.

Рассмотрим поведение излучения в интерферометре бегущей волны (ИБВ) (рис. 1, *a*). Функционально ИБВ кроме делителя пучка содержит замкнутую петлю, в которой происходит усиление (или ослабление) и временная задержка излучения относительно входного сигнала. Рассмотрим подробно возникновение модуляции света в ИБВ с частотой порядка обратного времени задержки (то есть для оптических длин петли от 0,1 *мм* до1 *м* – как раз порядка $T\Gamma u - \Gamma\Gamma u$).

Рис. 1. *а* – общая функциональная схема ИБВ;

 δ – изменение амплитуд сигнала в петле и на выходе интерферометра без усиления и потерь (α = 1)

Пусть амплитуда колебаний при прохождении упомянутой петли изменяется в α раз (то есть при $\alpha > 1$ сигнал в петле усиливается, а при $\alpha < 1$ – ослабляется), амплитудный коэффициент отражения делителя обозначим $\sin(r)$ (где $0 \le r \le \pi/2$), а величину временной задержки, вносимой петлёй, – T_1 . Для простоты будем считать, что на вход ИБВ с момента времени t = 0 начинает поступать монохроматическое излучение единичной амплитуды x(t) с периодом T = 18 единиц (для света с $\lambda = 540$ *нм* эта единица составит 0,1 фс): $x(t) = \sin\left(\frac{2\pi t}{18}\right)$ и проведём математическое моделирование процессов в ИБВ для различных α , $\sin(r)$, T_1 .

При $\alpha = 1$ (то есть без потерь и усиления) амплитуды сигнала в петле и на выходе ИБВ изменяются апериодически и после более (при $\sin(r) \rightarrow 1$) или менее (при $\sin(r) \rightarrow 0$) длительного процесса устанавливаются [1]. При $T_1 = nT$ с целочисленным *n* амплитуда волны в петле может превышать единицу – энергия волны накапливается в петле (рис. 1, δ , как и остальные графики, рассчитан и построен при помощи пакета MatLab), с полуцелым *n* – наоборот, не задерживается в ней. Это приводит к существенному отличию в потерях для волн различной частоты и возможности фильтрации широкополосного сигнала (рис. 2) аналогично эталону Фабри – Перо [2] и подобно описанному в [3, 4] волоконному устройству.

Рис. 2. Зависимость коэффициента фильтрации (отношение интенсивности на выходе к интенсивности на входе) (1 – α = 0,97; 2 – α = 0,8; 3 – α = 0,7; sin(r) = 0,64) от приведённой длины петли (отношение длины волны входного излучения к длине петли интерферометра)

Введение достаточного усиления (здесь его насыщение будем считать отсутствующим) приводит при целых *n* к монотонному росту амплитуд обоих сигналов, а при нецелых *n* – к наложению такого роста на более или менее сложную («несбалансированную») модуляцию сигнала по амплитуде (рис. 3). Естественной границей для «достаточности» усиления служит условие: $\alpha \sin r = 1$, т.к. $\sin(r)$ означает долю сигнала, возвращаемого расщепителем в петлю.

Рис. 3. «Несбалансированная» модуляция лазерного излучения

В этом случае на выходе интерферометра возникает «сбалансированная» модуляция (рис.4) с постоянной амплитудой импульсов и глубиной модуляции (причём обе эти характеристики определяются величиной α либо sin(r) = $1/\alpha$).

Как видно из рис.4, период модуляции очень зависит от T_1 : для целого $n = (T_1/T)$ он бесконечен, для n = 10+1/18 (рис.4, *a*) он равен $18T_1$, для n = 10+1/3 (рис.4, *б*) он $3T_1$, для n = 10+1/2 (рис.4, *c*) он $2T_1$. Более сложный дробный «довесок» в 7/18 (рис.4, *в*) даёт период около $3T_1$, как и 6/18 – но сам период разделяется локальными минимумами на несколько отдельных максимумов. В общем случае период модуляции представляет собой наименьшее общее кратное двух величин T_1 и T. Картинка для задержки в целое число периодов не приведена, т.к. она представляет просто ступенчато (с длиной ступени T_1) растущую экспоненту, превышающую к концу рассматриваемого на рис. 4 времени интенсивность в 7000 ед.

Рис. 4. Сбалансированная модуляция для разных времён задержки Т₁

При рассмотрении поведения излучения в ИБВ с усилением предполагалось, что когерентное излучение поступает на вход интерферометра бегущей волны мгновенно, но реально время нарастания переднего фронта входного излучения имеет конечное значение. В связи с этим очевидно, что сигнал на выходе ИБВ будет зависеть не только от α , sin(r), T_1 , но и от формы профиля и времени нарастания переднего фронта входного излучения (рис. 5). Более подробно этот вопрос описан в [5 – 7] вместе с воздействием рассмотренного интерферометра на импульсный входной сигнал.

Рис. 5. Изменение интенсивности на выходе при не мгновенном включении сигнала на входе

При определённой длине петли интерферометра появляется возможность получить стабильное высокочастотное (*ТГų*, *ГГų*) амплитудно-модулированное излучение на выходе ИБВ. Наибольшей частотой модуляции обладает интерферометр с полуволновой замкнутой петлёй (на длине петли укладывается нечётное число полуволн). Спектр сигнала на выходе ИБВ состоит из гармоник на несущей оптической частоте и на комбинационных частотах (разностных и суммарных), расположенных симметрично относительно частоты входного сигнала [7].

Наибольший интерес представляют собой спектральные составляющие с разностными частотами, которые находятся в низкочастотной области оптического спектра:

$$Z(t) = \frac{4(b-a)}{\pi} \sum_{k=1}^{n} \frac{1}{k} \cos\left[\omega \left(1 - \frac{k}{2n+1}\right)t\right],\tag{1}$$

где a — минимальная амплитуда сигнала на выходе ИБВ; b — максимальная амплитуда; ω — частота входного сигнала; n — целое число длин волн, укладывающихся в петле ИБВ; k — номер гармоники в спектре.

Как следует из соотношения (1), амплитуда каждой спектральной компоненты зависит не только от её номера (κ), но и от разности между максимальным и минимальным значениями амплитуды выходного сигнала, которые в свою очередь при сбалансированной модуляции излучения зависят от одного из параметров интерферометра: α или sin(r) (рис.6).

Рис. 6. Зависимость максимального и минимального значения амплитуды выходного сигнала от коэффициента отражения расщепителя

Полученные на рис.6 зависимости хорошо аппроксимируются следующими простыми функциями:

$$b = C_0 + C_1 \cdot \exp[-C_2 \cdot \sin(r)]; \quad a = C_3 + C_4 \cdot \sin(r).$$
(2)

С помощью метода наименьших квадратов были вычислены неизвестные коэффициенты: $C_0 = 0,8581087$; $C_1 = 7,7327353$; $C_2 = 3,8617516$; $C_3 = -0,0000022$; $C_4 = 0,9848092$.

При определённой длине петли ИБВ можно получить такую величину частоты модуляции, что значение некоторых комбинационных разностных частот может оказаться в терагерцовой области спектра $(10^{11} - 10^{13} \Gamma u)$ при использовании входного сигнала ИБВ видимого или близкого к нему диапазона. Для того чтобы количественно оценить эффективность генерации ТГц излучения запишем отдельно спектральную гармонику выходного сигнала, которая имеет самую низкую частоту в оптическом спектре. Из выражения (1) следует, что самой последней компонентой в спектре выходного сигнала будет гармоника с номером *n*, для которой k = 2n-1:

$$Z_{n}(t) = \frac{4(b-a)}{\pi(2n-1)} \cos\left[\omega \left(1 - \frac{2n-1}{2n+1}\right)t\right].$$
(3)

Используя выражения (2) и (3), рассчитаем зависимости частоты F_n и мощности P_n последней спектральной составляющей от длины петли и коэффициента усиления ИБВ (α) для случая, когда на вход интерферометра поступает монохроматическое излучение с длиной волны $\lambda = 1,55 \text{ мкм}$ и мощностью $P_0 = 1 \text{ Bm}$. Результаты вычислений приведены в таблице.

п	Длина петли ИБВ, <i>мкм</i>	F _n , <i>ТГų</i>	P_{n}, MBm $\alpha = 1,4142$	P_n, MBm $\alpha = 2$
10	16,275	18,43	1,99	9,931
20	31,775	9,44	0,472	2,357
40	62,775	4,77	0,115	0,574
60	93,775	3,19	0,0507	0,253
80	124,775	2,40	0,0284	0,141
100	155,775	1,92	0,0181	0,09
300	465,775	0,644	0,002	0,01
1000	1550,775	0,193	0,00018	0,0009

Из таблицы видно, что при увеличении длины петли ИБВ происходит уменьшение мощности и частоты последней составляющей в выходном спектре сигнала. Кроме того, чем больше коэффициент усиления сигнала в замкнутой петле, тем выше мощность излучения в ТГц диапазоне на выходе ИБВ.

Таким образом, проведенное математическое моделирование показало возможность получения разнообразной модуляции квазимонохроматического излучения и генерации непрерывного сигнала в терагерцовом диапазоне при использовании усилителя и фильтрации немонохроматического излучения в петле интерферометра бегущей волны без усиления.

Список литературы: 1. Lazarenko, A.G., Kanaev, A.V, Andreev, A.N. High Frequency Light Self– Modulation in Simple Interference Scheme // Proceedings of 6th Int. Conf. on Laser and Fiber-Optical Networks Modelling. – 2004. – P.41–44. 2. Лансберг, Г.С. Оптика. – М. : Физматлит, 2003. – 848 с. 3. *Котов, О.И., Лиокумович, Л.Б., Николаев, В.М. и др.* Влияние спектральных характеристик газового лазера на сигнал волоконно-оптических интерферометров // Письма в ЖТФ. – 1997. – Т.23, №20. – С. – 61–69. 4. *Jong,C.Y., Doo,G.K., Nadir, D.* Threshold Condition for Micro–Ring Cavity Lasers with Waveguide Self–Aligned Total Internal Reflectors // Proceeding of 2st Int. Conf. on Advanced Optoelectronics and Lasers – 2005. – P.190–192. 5. *Lazarenko, A.G., Kanaev, A.V.* Pulses Transformation in Running Wave Interferometers // Proceeding of 2st Int. Conf. on Advanced Optoelectronics and Lasers. – 2005. – P.177–180. 6. *Lazarenko, A.G., Andreev, A.N., Kanaev, A.V.* High Frequency Light Self–Modulation and Pulses Transformation in Running Wave Interferometers // Proceedings of SPIE. – 2008. – Vol.7009. – P.7009 OL. 7. *Lazarenko, A.G., Kanae, A.V, Andreev, A.N.* Input Signal Profile Influence on output Spectra of Running Wave Amplifying Interferometer for Terahertz Spectroscopy // Proceedings of 8th Int. Conf. on Laser and Fiber-Optical Networks Modelling. – 2006. – P.145–148.

Национальный технический университет «Харьковский политехнический институт»

Поступила в редколлегию 23.01.2012