В.Г. КРЫЖАНОВСКИЙ, д-р техн. наук, А.П. ЕФИМОВИЧ

ВЛИЯНИЕ ПОТЕРЬ В РЕЗОНАНСНЫХ КОНТУРАХ НА РАБОТУ УСИЛИТЕЛЯ КЛАССА F

Введение

Усилители мощности (УМ) класса F остаются в центре внимания разработчиков высокоэффективных усилителей, поскольку их реализация возможна в большем диапазоне выходных емкостей транзистора (и соответственно в диапазоне больших мощностей). Они широко используются в ВЧ и микроволновом диапазоне [1 - 3] благодаря большому количеству вариантов построения и высоким энергетическим характеристикам. При этом могут быть получены максимальные значения коэффициента использования транзистора и снижен уровень искажений [1 - 3]. Вместе с тем, многие аспекты проектирования УМ класса F (или инверсного класса F) остаются невыясненными вследствие влияния большого числа факторов – свойств реального транзистора (его нелинейностей и паразитных элементов) и свойств реальных входной и выходной согласующих цепей. В данной работе рассматривается влияние потерь в выходной согласующей цепи УМ класса F на его характеристики. Это представляет интерес как для усилителей на дискретных элементах, так и для усилителей в виде интегральных микросхем, где добротности интегральных катушек индуктивности малы [3].

Простейшим УМ класса F является усилитель с добавлением третьей гармоники [1, 4], в котором выходная цепь создает на выходе транзистора действительный импеданс на частоте основного сигнала, близкий к нулю импеданс на частоте второй гармоники и близкий к бесконечности импеданс на частоте третьей гармоники. Используя настройки на три гармоники, проведем моделирование и экспериментальное исследование ВЧ усилителя на транзисторе 2N7000 на частоту 13,56 *МГц*.

Моделирование и расчет усилителя

Схема усилителя показана на рис. 1. В работе использовалась модель МОП транзистора 2N7000 (рис. 2) [5 – 7], которую проверили на соответствие статическим характеристикам на постоянном токе (рис. 3) [8]. Параметры модели транзистора 2N7000 даны в табл. 1 [9].

Идеализированные схемы построения УМ класса F предполагают работу активного прибора в режиме генератора тока с отсечкой (смещение, соответствующее классу AB). В работах [10, 11] рассмотрена работа УМ класса F при высоком уровне входного сигнала, который необходим для получения максимальной выходной мощности, и показано, что это приводит к появлению искажений формы импульса тока и возникновению третьей гармоники тока, которая создает третью гармонику напряжения в нужной (отрицательной) фазе даже при угле отсечки равном 90°.

В работе выбрано напряжение смещения на затворе транзистора $V_{to} = 1,9 B$ и амплитуда входного сигнала 5,9 *B*, что соответствует заходу рабочей точки в область насыщения.

При расчете элементов усилителя необходимо учитывать взаимное влияние резонансных контуров друг на друга и трансформацию импеданса получающимися последовательно включенными Г-образными цепочками. Поэтому сопротивление нагрузки R_{Load} к стоку транзистора преобразуется в нагрузочный импеданс $Z(f_1)$. Большое влияние на работу выходной цепи оказывают ее паразитные элементы [12], поэтому при монтаже усилителя необходимо их минимизировать. Принципиальным фактором является наличие выходной емкости транзистора [13]. Без учета ее влияния невозможно получить требуемый нагрузочный импеданс на гармониках и поэтому ее необходимо включать в состав выходной согласующей цепи. Эта емкость является нелинейной и для данного транзистора она уменьшается приблизительно вдвое при напряжении питания на стоке 25 *В*. Для УМ класса F предлагается использовать различные схемы ее нейтрализации [2].

В усилителе применена параллельная схема нейтрализации выходной емкости на частоте второй гармоники, что позволяет использовать схему выходной цепи с отдельными контурами на частоты гармоник. Индуктивность дросселя L_1 необходимо брать такой (табл. 2), чтобы она на частоте второй гармоники $2f_1=27,12~M\Gamma u$ совместно с выходной емкостью транзистора сток-исток C_{DS} образовывала параллельный резонансный контур (рис. 4). Благодаря этому можно скомпенсировать влияние C_{DS} на настройку выходной нагрузочной цепи УМ. В противном случае выходная цепь не обеспечит на стоке транзистора требуемые для УМ класса F значения импеданса на частотах гармоник [1-4].

Номиналы элементов C_6, L_2, C_7, L_3 резонансных контуров и сопротивление нагрузки R_{Load} должны быть такими, чтобы выходная нагрузочная цепь на частоте первой гармоники создавала расчетное значение $Z(f_1) = R_{opt}$ активного нагрузочного импеданса, необходимого для получения максимальной выходной мощности, а на частоте третьей гармоники $Z(3f_1) \rightarrow \infty$ (рис.4). На частоте второй гармоники контур C_6 - L_2 представляет собой небольшую индуктивность, а контур C_7 - L_3 представляет собой небольшую емкость. Емкость разделительного конденсатора C_5 должна быть такой, чтобы она в совокупности с индуктивностью контура C_6 - L_2 и емкостью контура C_7 - L_3 на частоте второй гармоники образовывала последовательный резонансный контур, обеспечивая при этом $Z(2f_1) \rightarrow 0[1]$.

Оставшиеся реактивности контуров на частотах всех гармоник образуют трансформирующую цепь на основной частоте, которая преобразует нагрузочное сопротивление 200 *Ом* в сопротивление нагрузки, в реализованном усилителе оно равно 72 *Ом*.

Рис. 4

Активное значение нагрузочного импеданса, который должна создавать выходная нагрузочная цепь УМ класса F на рабочей частоте f_1 при угле отсечки $\theta_C = \pi/2$ вычисляется по формуле [11]

$$Z(f_1) = \frac{V_{DD} - V_K}{I_{D \max}/2},$$

где V_{DD} – напряжение источника питания; V_K – напряжение перегиба; $I_{D \max}$ – максимальный ток стока транзистора. Подставляя V_{DD} = 25 *B* и из [8] V_K =5 *B*, $I_{D \max}$ = 0,2 *A*, получим $Z(f_1)$ = 200 *Om*.

					Таблица 2
Элемент	Номинал	Элемент	Номинал	Элемент	Номинал
C_1	450 nΦ	C_5	83,6 <i>nΦ</i>	L_2	338 нГн
<i>C</i> ₂	10 nΦ	<i>C</i> ₆	35,8 nØ	L_3	337 нГн
<i>C</i> ₃	2,2 мкФ	<i>C</i> ₇	434 nΦ	R_1	2,8 кОм
C_4	220 мкФ	L_1	1,97 мкГн	<i>R</i> ₂	34 кОм

R_{Load} =72 *Ом*

Исследование влияния потерь на характеристики УМ класса F

Для исследования влияния потерь в резонансных контурах моделировалось изменение активного сопротивления, включенного последовательно с индуктивностью контура. В эксперименте последовательно с катушками индуктивности в контурах включались резисторы в SMD исполнении 0,28, 0,56, 0,82 *Ом*, на данной частоте по результатам измерения их реактивными сопротивлениями можно пренебречь. Резисторы включались в оба контура одинакового номинала, что является некоторым упрощением, не снижающим возможность анализа процессов в усилителе. После подключения резисторов измерялась добротность контуров Q_{L2} на частоте $3f_1$ =40,68 *МГц* и Q_{L3} на частоте f_1 =13,56 *МГц*. Также была измерена добротность Q_{L1} на частоте $2f_1$ =27,12 *МГц* с собственными потерями (табл. 3). Затем вычислялись сопротивления потерь $R'_L = (2\pi fL)/Q_L$, которые использовались при моделировании соответствующего варианта.

Тоблино Э

С этими подключенными резисторами проводилось два измерения параметров усилителя – с сохранением первоначальной настройки резонансных контуров и с изменением настройки контуров. Результаты моделирования и измерения энергетических параметров в зависимости от сопротивлений в контурах приведены в табл. 4 и на рис. 5, K_P – расчетный коэффициент усиления по мощности.

											таолица -
Данные, полученные без подстройки контуров											
				Моделирование				Эксперимент			
R _{L2} , R _{L3} ,Ом	$C_5,$ $n\Phi$	$C_6,$ $n\Phi$	$C_7, n\Phi$	P _{DC} , Bm	P _{LOAD} , Bm	K_P	КПД, %	P _{DC} , Bm	P _{LOAD} , Bm	K_P	КПД, %
0		35,8		2,077	1,580	175,5	76,1	2,075	1,560	173,3	75,20
0,28	83,6		8 434,1	2,067	1,523	169,0	73,7	2,075	1,467	163,0	70,73
0,56				2,058	1,473	163,7	71,6	2,075	1,425	158,3	68,68
0,82				2.050	1.421	157,9	69,3	1,875	1,266	140,7	67,55
Данные, полученные с подстройкой контуров											
0,28	86,3	36,6	438,1	2,108	1,594	177,0	75,6	2,000	1,467	163,0	73,38
0,56	95,7	37,4	434,7	2,437	1,798	200,0	73,8	2,050	1,459	162,1	71,18
0,82	82,8	37,0	434,8	2,009	1,429	158,8	71,1	1,850	1,280	142,2	69,18

Анализ полученных результатов можно проводить с точки зрения форм тока и напряжения на активном элементе и рассматривая соотношения фаз и амплитуд гармоник токов и напряжений на выходе активного прибора. Эти подходы эквивалентны, но дополняют друг друга. На рис. 6 показаны формы мгновенных v_{DS} и i_D , полученные с помощью: a – моделирования и δ – экспериментально.

Togerman 4

Рис. 6 показывает, что в данной схеме усилителя класса F удается получить малое перекрытие сигналов тока и напряжения, что и снижает потери; формы тока близки к полусинусоиде, а форма напряжения напоминает меандр, это способствует повышению выходной мощности. Такие формы сигналов получены в результате оптимизации параметров схемы с учетом реальной модели транзистора. Вместе с тем, видно, что формы сигналов получены суммированием не только трех первых гармоник, в ВЧ усилителях может быть существенным вклад высших гармоник. В ВЧ диапазоне в реальной цепи сложно получить требуемые значения нагрузочного импеданса транзистора на каждой из гармоник, вследствие взаимного влияния каждого из контуров на ход годографа нагрузочного импеданса [14]. Поэтому и анализировать выходную нагрузочную цепь нагляднее в этих терминах.

На рис. 7 показаны годографы нагрузочного импеданса, соответствующие обозначенному на рис. 4 сечению, полученные при моделировании: a – без подстройки контуров; s – с подстройкой контуров; в эксперименте: δ – без подстройки контуров; z – с подстройкой контуров. Использовалось значение выходной емкости транзистора, измеренное без подачи напряжения питания. Наблюдается отличие теории от эксперимента в значениях импеданса на частоте третьей гармоники, обусловленное неучтенными паразитными потерями и емкостями (табл.5). Эффект повышения выходной мощности и КПД при перестройке контуров с этих позиций может быть объяснен уменьшением активной составляющей нагрузочного импеданса, так как выходная мощность обратно пропорциональна $R(f_1)$.

Вместе с тем, это общее положение не является специфическим для данного случая, и представляет интерес поиск иных зависимостей, например фазовых соотношений токов и напряжений на активном приборе. Поэтому для форм v_{DS} и i_D , полученных при моделиро-

вании и в эксперименте, было сделано прямое дискретное преобразование Фурье, которое дало ответ на вопрос о том, в каких фазах находятся гармоники тока и напряжения (табл.6).

						Таблица 🗄				
R_{L2} , R_{L3} , $O_{\mathcal{M}}$	Импе	данс моделиро	вание	Импеданс эксперимент						
	Без подстройки контуров									
	$Z(f_1), O_M$	$Z(2f_1), O_M$	$Z(3f_1), O_M$	$Z(f_1), O_M$	$Z(2f_1), O_M$	$Z(3f_1), O_M$				
0	191,9-j96,0	5,3+j1,9	942,9-j1747	196,3-j86,1	4,4+j8,7	129,7-j196,3				
0,28	189,9-j98,1	6,0+j1,9	1032-j1566	193,4-j90,1	5,1+j8,2	113,3-j191,5				
0,56	188,0-j100,1	6,7+j1,9	1078-j1411	190,1-j94,3	5,7+j8,1	110,3-j187,9				
0,82	186,6-j101,7	7,6+j1,8	1102-j1210	186,1-j96,1	6,2+j8,4	108,6-j186,1				
	С подстройкой контуров									
0,28	182.7-j96,0	6,1+j6,8	235,8-j887,5	159,8-j90,7	5,7+j14,2	98,8-j183,7				
0,56	153,3-j80,9	6,9+j13,0	286,3-j896,7	151,7-j88,9	6,1+j15,3	118,6-j188,9				
0,82	189,8-j103,4	7,7+j2,9	448.2-j965,2	159,7-j99,3	6,5+j12,1	105,0-j180,0				

Таблица 6

	Фазы в моделировании						Фазы в эксперименте				
D	$\varphi_{V_{1m}}$,	$\varphi_{I_{1m}},$	$\varphi_{I_{1m}} - \varphi_{V_{1m}} ,$	$\varphi_{V_{3m}}$,	$\varphi_{I_{2m}}$,	$\Phi_{V_{1m}}$,	$\varphi_{I_{1m}}$,	$\varphi_{I_{1m}} - \varphi_{V_{1m}} ,$	$\varphi_{V_{3m}}$,	$\phi_{I_{2m}},$	
R_{L2} ,	град	град	град	град	град	град	град	град	град	град	
R_{L3}, OM	Теория [1-4]										
	-90	90	180	-90	180	-90	90	180	-90	180	
	Без подстройки контуров										
0	-100,0	75,6	175,6	-137,0	107,4	-107,5	106,6	214,1	-137,0	175,2	
0,28	-96,5	77,0	173,5	-124,1	118,6	-106,5	108,6	215,1	-133,5	172,1	
0,56	-88,0	80,8	168,8	-105,4	138,9	-109,6	104,1	213,7	-143,7	178,0	
0,82	-87,2	77,8	165,0	120,1	119,2	-108,9	105,0	213,9	-141,7	179,1	
	С подстройкой контуров										
0,28	-99,0	75,6	174,6	-134,1	108,7	-108,7	104,0	212,7	-141,4	181,5	
0,56	-97,1	76,1	173,2	-131,2	111,2	-123,8	84,3	208,1	-137,0	141,4	
0,82	-96,2	76,3	172,5	-130,0	112,3	-112,0	97,0	209,0	-149,8	158,8	

Полученные значения фаз (табл. 6) показывают, что как в моделировании, так и в эксперименте стоковый КПД тем выше, чем ближе разность $\varphi_{I_{1m}} - \varphi_{V_{1m}}$ к 180°, то есть ближе к теории [1 – 4]. Фазовая диаграмма, соответствующая теории УМ класса F [1-4], показана на (рис. 8, *a*), а фазовые диаграммы, полученные с помощью моделирования и экспериментально для настроенного УМ при $R_{L2} = R_{L3} = 0$, показаны на (рис. 8, *б*, *в*).

Таким образом, в результате моделирования и экспериментального исследования усилителя класса F с добавлением третьей гармоники напряжения установлено, что при учете реальных свойств транзистора и выходной цепи требования к электрическому режиму усилителя и настройке выходной согласующей цепи являются результатом компромисса за счет воздействия изменяющихся форм сигналов на кристалле транзистора. Критерием оптимизации параметров цепи и режима транзистора могут служить фазовые соотношения первых гармоник тока и напряжения на транзисторе. Дальнейшие уточнения могут быть сделаны при учете управления на большем числе гармоник и при большей точности моделирования нелинейных свойств транзистора.

Выводы

Рассчитан и промоделирован усилитель класса F на МОП транзисторе 2N7000 на частоту 13,56 *МГц* с параметрами: $P_{\rm BbIX} = 1,5 Bm$, КПД=76 %. Изучено влияние потерь в катушках индуктивности на характеристики УМ, показано, что изменением настройки контуров на частотах гармоник можно в некоторой степени компенсировать вредное влияние потерь на выходные характеристики. Объяснение полученных зависимостей состоит в изменении фазовых соотношений между гармониками тока и напряжения на активном элементе.

Список литературы: 1. Крыжановский, В.Г. Транзисторные усилители с высоким КПД. – Донецк : Апекс, 2004.–448 с. 2. Grebennikov, A., Sokal, N.J. Switchmode RE Power Amplifiers. – Burlington, Newnes, Elsevier, 2007. – 423 р. 3. Kazimierczuk, M. K. RF Power Amplifier. Chichester, John Willy & Sons, 2008. – 405 р. 4. Raab, F. H. Class-F Power Amplifiers with Maximally Flat Waveforms // IEEE Trans. of MTT, vol. 45, no. 11, pp.2007-2012. Nov.1997. 5. Shichman, H. and Hodges, D. A. Modeling and simulation of insulated-gate field-effect transistor switching circuits // IEEE Journal of Solid-State Circuits, SC-3, 285, Sept. 1968. 6. Karen A. Sakallah, Yao-tsung Yen, and Steve S. Greenberg. The Meyer Model Revisited: Explaining and Correcting the Charge Non-Conservation Problem, ICCAD, 1987. 7. Antognetti, P. and Massobrio, G. Semiconductor device modeling with SPICE, New York: McGraw-Hill, Second Edition 1993.

8. http://www.rlocman.ru/datasheet/data.html?di=92136&/2N7000RLRAG. 9. http://www.analoginnovations.com /SEDCompare2N7000Models.pdf. 10. Kim J. H., Jo G. D., Oh J. H., Kim Y. H., Lee K. C., and Jung J. H. Modeling and design methodology of high-efficiency class-F and class-F⁻¹ power amplifiers // IEEE Trans. Microw. Theory Tech., vol. 59, no. 1, pp. 153-165, Jan. 2011. 11. Moon J., Jee S., Kim Jungjoon, Kim Jangheon, and Kim B. Behaviors of Class-F and Class-F Amplifiers // IEEE Trans. on Microw. Theory and Tech., vol. 60, no. 6, pp. 1937-1951. June 2012. 12. Kenta Kuroda, Ryo Ishikawa, Kazuhiko Honjo, Parasitic Compensation Design Technique for a C-Band GaN HEMT Class-F Amplifier // IEEE Trans on Microw. Theory and Tech., vol. 58, no. 11, pp. 2741-2750, Nov 2010. 13. Paolo Colantonio, Franco Giannini and Ernesto Limiti, HF Class F Design Guidelines / MIKON - 2004.XV Int. Conf. of on Microwaves, Radar and Wireless Communications. Poland, Warszawa, May 17-21, 2004, Conference Proc., vol.1.pp.27-38. 14. Franco, M.J. An Efficient, 35 dBm, Inverse Class-F, UHF RF Power Amplifier Module on a 12 mm² Footprint Designed in First Pass Through Accurate Modeling and Simulation // Microwave, MTT-S International Symposium // MTT, pp. 930-931, 2010.

Донецкий национальный университет

Поступила в редколлегию 11.07.2012