КРУГОВОЙ РЕЗОНАТОР С МЕНЯЮЩЕЙСЯ ПО ПРОИЗВОЛЬНОМУ ЗАКОНУ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТЬЮ

Введение

Динамические резонаторы, в которых при помощи воздействия стороннего поля возможно изменение параметров материала, представляют большие возможности для их использования в системах замедления и остановки света, устройствах все-оптического переключения, перенастраиваемых фильтрах [1, 2].

Оптические резонаторы в простейшем случае имеют форму тонкого диска, кольца или сферы. В таких открытых резонаторах возможно возбуждение колебаний типа шепчущей галереи (ШГ), при котором волна отражается от границы за счет эффекта почти полного внутреннего отражения. В связи с тем, что волна почти не покидает резонатор, добротность таких колебаний чрезвычайно высока.

Известно, что изменение показателя преломления неограниченной среды ведет к преобразованию частоты и амплитуды первичного поля [3]. Смещение частоты наблюдается также при изменении показателя преломления в волноведущих и резонансных структурах [4 – 6]. Величина сдвига и детали переходного процесса зависят от геометрии структуры. Особый интерес представляет параметрическая модуляция сред. Обычно изучают модуляцию на бесконечном временном интервале [7], но волна типа ШГ имеет конечное «время жизни» и такой подход в данном случае неприменим.

В работе теоретически исследуется двумерная задача преобразования волны ШГ в тонком дисковом резонаторе в результате изменения во времени диэлектрической проницаемости материала. Рассмотрена скачкообразная, импульсная и плавная зависимость проницаемости от времени (рис. 1).

Постановка задачи

Рассматривается двумерная начально-краевая задача преобразования моды диэлектрического кругового дискового резонатора в результате варьирования во времени материала резонатора. Для тонких дисков трехмерная задача может быть заменена ее двумерным аналогом с помощью метода эффективного показателя преломления [8]. Далее под диэлектрической проницаемостью будем понимать ее эффективную величину. Ограничимся рассмотрением перпендикулярно поляризованных полей, так как в тонких дисках именно такие поля являются доминирующими. Для описания полей вводится в рассмотрение цилиндрическая система координат (ρ, φ, z), где ось z перпендикулярна плоскости микрорезонатора. В качестве первичного поля рассматривается перпендикулярно — поляризованная бегущая мода резонатора, z координата магнитного поля которой имеет вид

$$h_0 = \begin{cases} b_m J_m(n_1 k_0 \rho) e^{im\varphi}, & \rho < a, \\ H_m^{(2)}(k_0 \rho) e^{im\varphi}, & \rho > a, \end{cases}$$
 (1)

где $b_m = H_m^{(2)}(k_0 a) / J_m(n_1 k_0 a)$, a — радиус резонатора, $k_0 = \omega_0/c$, c — скорость света в вакууме, $n_1 = \sqrt{\varepsilon_1}$ — эффективный показатель преломления дискового микрорезонатора, ω_0 — собственная частота, которая является решением дисперсионного уравнения

$$n_1 J_m(n_1 k_0 a) H_m^{(2)\prime}(k_0 a) - J_m^{\prime}(n_1 k_0 a) H_m^{(2)\prime}(n_1 k_0 a) = 0.$$
 (2)

Зависимость от времени первичного поля — $e^{i\omega_0(t-t^*)}\Theta(t-t^*)$, где t^* — момент возбуждения моды. В нашем рассмотрении $t^*<0$. Далее предполагается, что, начиная с нулевого момента под действием стороннего поля, диэлектрическая проницаемость внутри диска начинает меняться по некоторому закону $\varepsilon(t)=n^2(t)$. Все среды будем считать линейными и немагнитными. Преобразованное поле должно удовлетворять волновому уравнению:

$$\Delta h - \frac{1}{c^2} \frac{\partial}{\partial t} \left[\varepsilon(t) \frac{\partial}{\partial t} h \right] = 0 \text{ в области } \rho < a, \tag{3}$$

$$\Delta h - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} h = 0$$
 в области $\rho > a$, (4)

здесь $\Delta = \partial_{\rho\rho}^2 + 1/\rho \partial_{\rho} + 1/\rho^2 \partial_{\varphi\varphi}^2$.

В данной работе будут рассмотрены частные случаи изменения эффективного показателя преломления, изображенные на рис. 1, а также предложен способ моделирования для произвольной функции n(t).

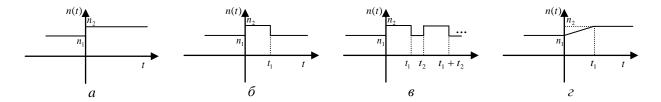


Рис. 1. Зависимость от времени показателя преломления

Скачкообразное изменение диэлектрической проницаемости

Если предположить, что показатель преломления меняется скачком в некоторый, например в нулевой, момент от значения n_1 до значения n_2 (рис. 1, a), тогда $\varepsilon(t)$ в (3) можно

вынести из-под знака производной и, применив преобразование Лапласа $H(p) = \int_{0}^{\infty} h(t)e^{-pt}dt$

к (3) и (4), решить задачу аналитически. Решение задачи в такой постановке требует учета начальных условий, которые для данной поляризации имеют вид

$$h(t=0^+) = h_0(t=0^-)$$
, $\partial_t h(t=0^+) = n_1^2 / n_2^2 \partial_t h_0(t=0^-)$ в области ($\rho < a$), (5)

$$h(t=0^+) = h_0(t=0^-)$$
, $\partial_t h(t=0^+) = \partial_t h_0(t=0^-)$, в области $(\rho > a)$. (6)

Аналитическое решение данной задачи в виде преобразования Лапласа имеет вид:

$$H = \frac{1}{c} \frac{n_2^2 q + i n_1^2 k_0}{q^2 n_2^2 + k_0^2 n_1^2} J_m(n_1 k_0 \rho) e^{-i\omega t^*} e^{im\varphi} + G I_m(n_2 q \rho) e^{im\varphi}, \ (\rho < a), \tag{7}$$

$$H = \frac{1}{c} \frac{1}{q - ik_0} H_k^{(2)}(k_0 \rho) e^{-i\omega t^*} e^{im\varphi} + FK_m(q\rho) e^{im\varphi}, \ (\rho > a),$$
 (8)

$$G = \frac{n_1 k_0 J_m(n_1 k_0 a) K'_m(q a) + q J'_m(n_1 k_0 a) K_m(q a)}{I'_m(n_2 q a) K_m(q a) - n_2 K'_m(q a) I_m(n_2 q a)} \cdot \frac{iq(n_1^2 - n_2^2) n_2}{(q - ik_0)(p^2 n_2^2 + k_0^2 n_1^2)} \frac{b_m}{c} e^{-i\omega t^*}, \quad (9)$$

$$F = \frac{n_2 q J_m'(n_1 k_0 a) I_m(n_2 q a) + n_1 k_0 I_m'(n_2 q a) J_m(n_1 k_0 a)}{I_m'(n_2 q a) K_m(q a) - n_2 K_m'(q a) I_m(n_2 q a)} \cdot \frac{iq(n_1^2 - n_2^2)}{n_1 (q - i k_0) (p^2 n_2^2 + k_0^2 n_1^2)} \frac{b_m}{c} e^{-i\omega t^*}, (10)$$

здесь q = p/c. Решение начально-краевой задачи представимо в виде суперпозиции решений начальной задачи (первое слагаемое в (7)) и слагаемого, явно учитывающего влияние границы (второе слагаемое в (7) и (8)). Обратное преобразование во временную область находим

по формуле Меллина $h(t) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} H(p) e^{pt} dp$. Выражения (7) — (10) имеют простые полюса

в точках $q = ik_0$, $q = \pm i \, n_1 k_0 / n_2$, а также в нулях знаменателей выражений (9), (10), которые определяют собственные колебания резонатора при новом значении показателя преломления. Все нули являются комплексно сопряженными величинами вида $q = q' \pm i q''$, где q' определяет затухание, а q'' частоту осцилляций. Также выражения (7) – (10) имеют точку ветвления q = 0.

Оценивая выражения (9) и (10) при больших значениях q, получим $qGI_m(n_2q\rho)\approx const\cdot e^{-n_2q(a-\rho)}$, а $qFK_m(q\rho)\approx const\cdot e^{-q(\rho-a)}$. С учетом этих асимптотических оценок переходный процесс можно описать следующим образом. Сразу после скачка проницаемости поле внутри резонатора описывается первым слагаемым в (7), поле снаружи описывается первым слагаемым в (8), которое соответствует первичной волне ШГ. На границе формируется нестационарная волна (второе слагаемое в (7) и (8)), которая распространяется в противоположных от границы направлениях. После того как она достигает центра резонатора, полное поле описывается суммой вычетов во всех особых точках полученных решений (7) – (8) и интегралом вдоль разреза, который проходит вдоль отрицательной полуоси $\mathrm{Re}(q)$ комплексной плоскости. Вычеты в особых точках $q=ik_0$ и $q=\pm i n_1 k_0/n_2$ равны нулю, это означает, что соответствующие волны существуют только в течение короткого переходного интервала времени, так что в установившемся режиме компоненты с такими частотами отсутствуют.

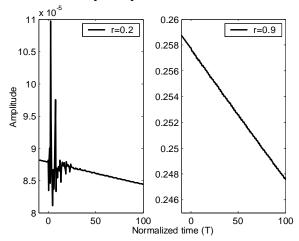


Рис. 2. Преобразование волны ШГ в результате скачкообразного изменения показателя преломления ($n_1 = 2.63$, $n_2 = 2.631$)

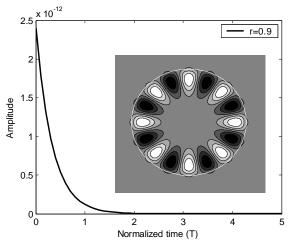


Рис. 3. Вклад интеграла вдоль разреза комплексной плоскости ($n_1 = 2.63$, $n_2 = 2.631$)

На рис. 2 представлены результаты численного моделирования преобразования волны ШГ $h_{8,1}$ (обозначение $h_{m,l}$ соответствует моде с числом угловых вариаций m и числом вариаций вдоль радиуса l) в диске с эффективным показателем преломления $n_1=2.63$. На вставке в рис. 3 изображено пространственное распределение такой моды. Для моделирова-

ния используется нормированное время T=tc/a. Нормированная собственная частота такой моды $\omega_0 a/c=4.54342481+4.024\cdot 10^{-4}i$. Реализуемое на практике быстрое изменение показателя преломления имеет величину $10^{-3}-10^{-4}$. Предположим, что в нулевой момент показатель преломления изменился до значения $n_2=2.631$. На рис. 2 слева представлена временная динамика поля в точке близкой к центру ($r=\rho/a=0.2$), справа представлена зависимость поля от времени в точке близкой к границе r=0.9. При скачке проницаемости возбуждается целый спектр собственных колебаний с различной радиальной зависимостью. Нули знаменателя выражения (9), имеющие вид $q=q'\pm iq''$, определяют все возбуждаемые моды, знак «+» соответствует возбуждаемым модам, бегущим в том же направлении, что и исходная (будем называть их прямыми или прошедшими во времени), а знак «-» соответствуют модам, бегущим в противоположном направлении (будем называть их обратными или отраженными во времени). Переход к более привычному частотному представлению осуществляется подстановкой $q=i\omega$.

Так, посчитав вычеты в соответствующих особых точках, можно оценить вклад каждой моды в полное поле. Так волна ШГ $h_{8,1}$ в резонаторе с новым показателем преломления $n_2=2.631$ имеет частоту $\omega_t a/c=4.5417998+3.999\cdot 10^{-4}i$. Модуль вычета (величины нормированы амплитудой падающей волны) равен 0.999985, для обратной волны ШГ $1.8\cdot 10^{-4}$. Следующая мода $h_{8,2}$ имеет нормированную частоту $\omega a/c=5.915798+1.53\cdot 10^{-2}i$, ее амплитуда $1.3\cdot 10^{-4}$, а для обратной волны $1.7\cdot 10^{-5}$. При скачке проницаемости возбуждается целый спектр собственных колебаний с различной радиальной зависимостью. Однако амплитуды этих мод чрезвычайно малы по сравнению с амплитудой прямой волны ШГ. При этом наблюдается смещение частоты от значения ω_0 до значения ω_t . Влияние интеграла вдоль разреза ничтожно мало и при расчетах им можно пренебречь (рис. 3). Таким образом, при вычислениях можно приближенно считать, что при скачке проницаемости волна ШГ преобразуется в прошедшую во времени волну ШГ с новой частотой и амплитудой. Увеличение показателя преломления ведет к уменьшению частоты и амплитуды, и наоборот.

Изменение показателя преломления в виде одиночного прямоугольного импульса

Предположение импульсного изменения диэлектрической проницаемости (рис. 1, δ) также позволяет получить аналитическое решение задачи. Предположим, что показатель преломления резонатора в нулевой момент изменился от значения n_1 до значения n_2 , а в момент t_1 возвратился до первичного состояния n_1 . На промежутке времени $0 < t < t_1$ поле, обозначим его $h_1'(t)$, определяется формулами (7) — (10). В качестве первичного поля для следующего изменения проницаемости в момент t_1 следует брать каждую возбуждаемую на предыдущем этапе моду и решать задачу аналогично случаю скачкообразного изменения проницаемости с учетом сдвижки во времени. Ниже приведено решение для случая прямой волны ШГ (поле внутри резонатора):

$$L = \frac{qn_1^2 + ik_t n_2^2}{q^2 n_2^2 + k_t^2 n_1^2} Be^{i\omega_t t_1} J_m(n_2 k_t \rho) + RBI_m(n_1 q \rho) e^{i\omega_t t_1} ,$$

$$R = \frac{n_2 k_t J_m(n_2 k_t a) K'_m(q a) + q J'_m(n_2 k_t a) K_m(q a)}{I'_m(n_1 q a) K_m(q a) - n_1 K'_m(q a) I_m(n_1 q a)} \cdot \frac{iq(n_2^2 - n_1^2) n_1}{(q - ik_t)(q^2 n_1^2 + k_t^2 n_2^2)} ,$$
(11)

здесь B — амплитуда волны ШГ, полученная по формуле (9). Полное поле (обозначим его $h_1''(t)$) после момента t_1 определяется как суперпозиция всевозможных преобразованных возбуждаемых мод, амплитуды которых будут также малы по сравнению с волной ШГ.

На интервале покоя параметров среды (когда показатель преломления возвращается к своему исходному значению n_1) частота волны ШГ также возвращается к своему исходному значению ω_0 , но при этом изменяется ее амплитуда. На рис. 4 представлена амплитуда возбуждаемых волн ВШ при изменении показателя преломления от значения $n_1 = 2.63$ до значения $n_2 = n_1 + \Delta n$ в зависимости от продолжительности интервала возмущения свойств среды. Амплитуда возбуждаемой волны ШГ нормирована амплитудой первичной волны, продолжительность интервала возмущения среды нормирована периодом первичной волны (t_0) , здесь также использованы нормированные величины $T_0 = t_0 c/a$, $T_1 = t_1 c/a$. На рис. 5 представлена эволюция полного поля во времени. В точке наблюдения, близкой к центру, видны два всплеска поля, соответствующих каждому скачку проницаемости.

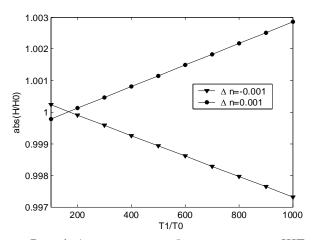


Рис. 4. Амплитуды возбуждаемых волн ШГ в результате импульсного изменения показателя преломления в зависимости от продолжительности возмущающего импульса

Рис. 5. Временная динамика преобразованного полного поля в результате импульсного изменения показателя преломления ($n_1 = 2.63$, $n_2 = 2.631$, $T_1 = 200$)

Модуляция показателя преломления в виде серии прямоугольных импульсов

Аналогично можно рассмотреть последовательность из N прямоугольных импульсов возмущений среды с периодом t_2 . Пусть время возмущения среды t_1 чередуется с интервалом возвращения параметров среды к первичному значению (рис. 1, ϵ). При условии, что t_1 и t_2 много больше периода первичной волны, будем рассматривать только возбуждаемые прямые и обратные высокодобротные волны ШГ. Введем обозначения для вычетов, соответствующих возбуждаемым прямым и обратным волнам ШГ:

$$i^{m}res\big[G,k_{0},ik_{t}\big]=B\;,\;i^{m}res\big[G,k_{0},i\bar{k_{t}}\big]=\bar{B}\;,\;i^{m}res\big[G,\bar{k}_{0},ik_{t}\big]=B^{*}\;,\;i^{m}res\big[G,\bar{k}_{0},i\bar{k_{t}}\big]=\bar{B}^{*}\;,\;(12)$$

$$i^{m}res\big[R,k_{t},ik_{0}\big]=M\;,\;i^{m}res\big[R,k_{t},i\overline{k_{0}}\big]=\overline{M}\;,\;i^{m}res\big[R,\overline{k_{t}},ik_{0}\big]=M^{*}\;,\;i^{m}res\big[R,\overline{k_{t}},i\overline{k_{0}}\big]=\overline{M}^{*}\;,\;(13)$$

Здесь k_0 и $\overline{k_0}$ — волновые числа соответственно прямой и обратной волн ШГ на интервале покоя параметров среды n_1 ; k_t и $\overline{k_t}$ — волновые числа волн ШГ на интервале возмущения n_2 . Так, на интервалах времени, где показатель преломления принимает значение n_2 после серии из N импульсов ($Nt_2 < t < Nt_2 + t_1$) магнитное поле $h'_{N+1}(t)$ можно приближенно представить в виде суммы прямой и обратной волн ШГ

$$h'_{N+1}(t) = e^{i\omega_t t} C_{N+1} J_k(n_2 k_t \rho) + e^{i\bar{\omega}_t t} D_{N+1} J_k(n_2 \bar{k}_t \rho), \qquad (14)$$

$$C_{N+1} = e^{-i\omega_t N t_2} \left(A_N B e^{i\omega_0 N t_2} + B_N B^* e^{i\overline{\omega}_0 N t_2} \right), \tag{15}$$

$$D_{N+1} = e^{-i\overline{\omega}_t N t_2} \left(A_N \overline{B} e^{i\omega_0 N t_2} + B_N \overline{B}^* e^{i\overline{\omega}_0 N t_2} \right). \tag{16}$$

На интервалах времени, где показатель преломления возвращается к первичному значению n_1 ($Nt_2 + t_1 < t < (N+1)t_2$), поле имеет вид

$$h_{N+1}''(t) = e^{i\omega_0 t} A_{N+1} J_k(n_1 k_0 \rho) + e^{i\overline{\omega}_0 t} B_{N+1} J_k(n_1 \overline{k}_0 \rho),$$
(17)

где
$$A_{N+1} = e^{-i\omega_0(Nt_2+t_1)} \Big(MC_{N+1} e^{i\omega_t(Nt_2+t_1)} + M^* D_{N+1} e^{i\overline{\omega}_t(Nt_2+t_1)} \Big),$$
 (18)

$$B_{N+1} = e^{-i\overline{\omega}_0(Nt_2 + t_1)} \left(\overline{M}C_{N+1} e^{i\omega_t(Nt_2 + t_1)} + \overline{M}^* D_{N+1} e^{i\overline{\omega}_t(Nt_2 + t_1)} \right). \tag{19}$$

3.4

Здесь
$$C_1=B,~D_1=\overline{B},~A_1=\left(MBe^{i\varpi_lt_1}+M^*\overline{B}e^{i\overline{\omega}_lt_1}\right)e^{-i\overline{\omega}_0t_1},~B_1=\left(\overline{M}Be^{i\omega_lt_1}+\overline{M}^*\overline{B}e^{i\overline{\omega}_lt_1}\right)e^{-i\overline{\omega}_0t_1}$$
 .

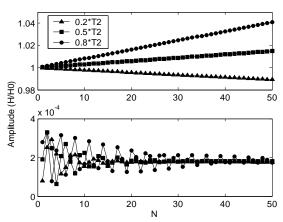


Рис. 6. Амплитуды возбуждаемых волн ШГ на интервале покоя свойств среды после серии из *N* импульсов: вверху – для прямой волны, внизу – для обратной

Рис. 7. Временная динамика преобразованного полного поля после серии из N импульсов

1.45

 $\Delta n = -0.005$

 $\Delta n = 0.001$

 $\Delta n = 0.005$

1.46

x 10⁴

На рис. 6 изображены амплитуды возбуждаемых волн ШГ на интервале покоя свойств среды после серии из N возбуждающих импульсов. Верхний график соответствует амплитудам прямых волн, нижний — амплитудам обратных волн. Период модуляции $t_2 = 500 \cdot t_0$, что соответствует частотам модуляции, достигаемым на практике. При одной и той же периодичности импульсов возможен как рост, так и убывание амплитуды в зависимости от длительности возбуждающего импульса t_1 . Рост амплитуды наблюдается, если $t_1 \Box t_2/2$, а падение амплитуды, если $t_1 \Box t_2/2$. На рис. 7 представлена зависимость поля от времени после серии из N возбуждающих импульсов (N=20, t_2 = $500 \cdot t_0$, t_1 = $t_2/2$). Точка наблюдения расположена вблизи границы резонатора. Очевиден рост амплитуды, что ведет к замедлению излучения моды при увеличении показателя преломления на интервалах возбуждения. Причем, этот эффект усиливается при увеличении глубины модуляции.

Плавное изменение диэлектрической проницаемости

Построенные для случая скачкообразного изменения во времени свойств среды решения позволяют приближенно рассматривать произвольные временные зависимости показателя преломления. Функция $n_1(t)$ может быть аппроксимирована кусочно-постоянной функцией

и на каждом временном отрезке постоянства параметров среды задача допускает точное решение с помощью полученных выше решений для скачкообразных изменений параметров.

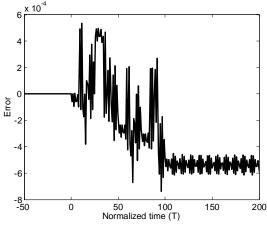


Рис. 8. Относительная погрешность вычислений при линейном изменении показателя преломления

В работе численно исследовано линейное изменение показателя преломления от значения $n_1 = 2.63$ до значения $n_2 = 2.62$ в интервале от 0 до $T_1 = 100$. Плавное изменение также приведет к изменению частоты возбуждаемой моды ШГ, но при этом увеличит продолжительность переходного периода. Для того чтобы оценить точность аппроксимации, разобьем интервал от n_1 до n_2 на более мелкие интервалы с шагом Δn . Найдем полное поле для случая $\Delta n = 10^{-4}$ и $\Delta n = 5 \cdot 10^{-4}$. Разность между ними, деленную на модуль поля при $\Delta n = 10^{-4}$, будем рассматривать как относительную погрешность вычислений. График зависимости погрешности от времени представлен на рис. 8, по-

лученная погрешность по модулю не превосходит $6 \cdot 10^{-4}$.

Выводы

Теоретически исследована задача преобразования волны ШГ в тонком дисковом резонаторе в результате изменения во времени диэлектрической проницаемости материала. Рассмотрена скачкообразная, импульсная и плавная зависимость проницаемости от времени. При скачкообразном изменении показателя преломления бегущая волна ШГ преобразуется в суперпозицию прямых и обратных мод резонатора, но их амплитуды пренебрежимо малы по сравнению с прошедшей во времени волной ШГ. При этом изменяется ее частота и амплитуда. В ступенчато-периодической нестационарной среде возможен контроль амплитуды волны ШГ, что, в зависимости от значений параметров, ускоряет или замедляет процесс излучения моды. Этот эффект усиливается при увеличении глубины модуляции.

Список литературы: 1. Heebner, J. Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonant-array waveguide // Phys. Rev. E. 2002. V. 65. 036619. 2. Yanik, M., Fan, S. Time Reversal of Light with Linear Optics and Modulators // Physical Review Letters. 2004. V. 93(7), 173903. 3. Morgenthaler, F.R. Velocity modulation of electromagnetic wave // IRE Trans. on Microwave Theory and Technique. 1958. V. 6. P. 167-172. 4. Fedotov, F., Nerukh, A.G., Benson, T.M., Sewell, P. Investigations of electromagnetic field in a layer with time-varying medium by Volterra integral equation method // J. of Lightwave Technology, vol. 21, No 1, pp.305-314, 2003. 5. Sakhnenko, N.K., Benson, T.M., Sewell, P., Nerukh, A.G.: Transient transformation of Whispering Gallery resonator modes due to time variations in dielectric permittivity // Optical and Quantum Electronics. 2006. V. 38. P. 71-81. 6. Notomi, M, Mitsugi, S: Wavelength conversion via dynamic refractive index tuning of a cavity // Physical Review A. 2006. V. 73. 051803(R). 7. Zurita-Sanchez, J., Halevi, P., Cervantes-Gonzales, J. Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function e(t) // Physical Review A. 2009. V. 79. P. 053821 1-13. 8. Smotrova, E. I., Nosich, A. I., Benson, T. M., Sewell, P.: Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis // IEEE Journal of Selected Topics in Quantum Electronics. 2005. V. 11. P. 1135-1142.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 11.08.2012