О. Л. ШИЛЯЕВА, В. А. ПЕТРОВ, канд. физ.-мат. наук СТРУКТУРНЫЕ ФУНКЦИИ ПОЛЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ПРИ СТАТИСТИЧЕСКИ АНИЗОТРОПНОЙ ТРОПОСФЕРЕ

Введение

Для оценки текущих условий распространения УКВ, т.е. краткосрочного прогноза коэффициента ослабления сигнала вблизи радиогоризонта в зоне прямой видимости и в области геометрической тени, необходимы данные о пространственном распределении диэлектрической проницаемости є на трассе распространения радиоволн. В ряде случаев, в частности при распространении радиоволн над морской поверхностью, предполагается, что распределение $\varepsilon(h)$ зависит только от высоты h над поверхностью Земли. При этом влияние мелкомасштабных флуктуаций коэффициента преломления на эффективное значение интенсивности поля за радиогоризонтом не учитывается [1, 2]. В работе [3] для приближенной оценки поля УКВ вблизи границы геометрической тени по экспериментально измеренному высотному профилю $\varepsilon(h)$ в средней части трассы последовательно применяются метод геометрической оптики (МГО) и метод Кирхгофа. Результаты расчета поля этим методом для длин волн $\lambda = 30 c_M [3 - 6]$ показали, что на оценки уровня поля сильно влияет структура поля є(r) в области, непосредственно примыкающей к земной поверхности. Поле диэлектрической проницаемости воздуха в этой части пространства подвержено существенным суточным и сезонным изменениям и в большинстве случаев сильно отличается от общепринятой модели Колмогорова – Обухова для зоны свободной конвекции.

Оценки корреляционных функций электромагнитного поля в точке наблюдения, находящейся вблизи поверхности Земли, выполненные в экспериментальных работах [7, 8], указывают на нестационарность атмосферных процессов и неоднозначность результатов измерений, полученных при разном времени усреднения данных. В этом случае можно рассматривать пространственное распределение $\varepsilon(\mathbf{r})$ как неоднородное поле со статистически однородными первыми приращениями.

В данной работе путем математического моделирования исследуются структурные функции поля диэлектрической проницаемости воздуха с учетом статистической неоднородности и характерной для приземного слоя атмосферы слоистой структуры.

Структурные функции поля и их спектральные разложения

Для описания статистических свойств действительных случайных процессов и случайных полей со стационарными первыми приращениями используют структурные функции [9]. По определению, структурная функция D поля $f(\mathbf{r})$, среднее значение которого $\langle f(\mathbf{r}) \rangle$ постоянно, вычисляется следующим образом:

$$D_f(\rho) = \left\langle \left[f(\mathbf{r} + \rho) - f(\mathbf{r}) \right]^2 \right\rangle,$$

где $\rho = \mathbf{r} - \mathbf{r}'$, **r** и \mathbf{r}' – радиус-векторы точек в неоднородной среде, а знак () обозначает статистическое усреднение.

Для статистически изотропной атмосферы, в соответствии с законом «двух третей» Колмогорова – Обухова, структурная функция пространственных флуктуаций диэлектрической проницаемости є в инерционном интервале турбулентности описывается выражением [9]:

$$D_{\varepsilon}(r) \approx C_{\varepsilon}^2 r^{2/3}, \quad L_0 > r > l_0,$$
 (1)

где C_{ε}^2 – структурная постоянная, L_0 и l_0 – соответственно внешний и внутренний масштабы турбулентности. Трехмерная спектральная плотность, соответствующая структурной функции (1), может быть записана в следующей форме:

$$\Phi_{\varepsilon}(k) \approx 0.033 C_{\varepsilon}^2 (k^2 + \kappa_0^2)^{-11/6}, \qquad (2)$$

где k – волновое число, а параметр $\kappa_0 = 2\pi/L_0$ введен для устранения неопределенности при k = 0.

Анизотропное однородное поле $\varepsilon(\mathbf{r})$ в простейшем случае можно характеризовать корреляционной функцией вида:

$$R(\mathbf{r}_{1} - \mathbf{r}_{2}) = R[\alpha(x_{1} - x_{2}) + \beta(y_{1} - y_{2}) + \gamma(z_{1} - z_{2})].$$
(3)

Тогда спектральная плотность $\Phi_{\varepsilon}(\mathbf{k})$, соответствующая (3), зависит от направления волнового вектора **k**:

$$\Phi_{\varepsilon}(\mathbf{k}) = 0,033C_{\varepsilon}^{2}(\kappa_{0}^{2} + a_{x}k_{x}^{2} + a_{y}k_{y}^{2} + a_{z}k_{z}^{2})^{-11/6},$$
(4)

причем значения постоянных a_x , a_y и a_z определяют соотношения между характерными масштабами неоднородностей в направлениях координатных осей *x*, *y*, *z*.

Если поле $\varepsilon(\mathbf{r})$ статистически неоднородно, то описание его с помощью корреляционной функции (3) оказывается неоднозначным. Однако выражение (4) можно рассматривать как спектральную плотность анизотропного поля. В этом случае трехмерная структурная функция $D(\mathbf{r})$ связана с $\Phi_{\varepsilon}(\mathbf{k})$ следующим образом [9]:

$$D(\mathbf{r}) = 2 \iiint_{-\infty}^{\infty} \left[1 - \cos \mathbf{k} \, \mathbf{r} \right] \Phi_{\varepsilon}(\mathbf{k}) d^{3} k \, .$$

Для математического моделирования в данной работе используется спектральная плотность $\Phi_{\varepsilon}(\mathbf{k})$ в следующей форме:

$$\Phi_{\varepsilon}(\mathbf{k}) = 0,033C_{\varepsilon}^{2} \left[\kappa_{0}^{2} + a\left(k_{x}^{2} + k_{z}^{2}\right) + k_{y}^{2} \left(1 + \frac{b}{1 + c \cdot k_{y}^{2}}\right) \right]^{-11/6},$$
(5)

где постоянные *a*, *b* и *c* выбираются так, чтобы учесть различие характерных размеров неоднородностей в горизонтальной (*хоу*) и вертикальной (*yoz*) плоскостях.

В выражении (5) учтена гипотеза Колмогорова, состоящая в том, что в области малых масштабов (т.е. при больших волновых числах k) флуктуации ε статистически изотропны. Действительно, с ростом k_y выражение в круглых скобках стремится к единице, а $\Phi_{\varepsilon}(\mathbf{k})$ приближается к выражению (2), в котором спектральная плотность зависит только от модуля волнового вектора. При $|\mathbf{k}| \sim 1$ вертикальная составляющая волнового вектора k_y входит с весом порядка (1+b/c), где b/c >> 1. В области малых волновых чисел горизонтальные размеры неоднородностей в среднем значительно превышают вертикальные, но характер убывания спектральной плотности (6) во всех направлениях соответствует структурной функции вида (1).

Математическое моделирование и результаты расчетов

Отличие внешнего L_0 и внутреннего l_0 масштабов турбулентности в инерционном интервале очень велико, и по данным экспериментальных измерений отношение L_0/l_0 имеет порядок $10^3...10^4$ [9]. Поэтому для достаточной детализации выборочных функций $\varepsilon(\mathbf{r})$ при описании их числовыми последовательностями и расчетах структурных функций

 $D_{\varepsilon}(\mathbf{r}_{1}, \mathbf{r}_{2})$ целесообразно перейти от трехмерной модели структуры $\varepsilon(\mathbf{r})$ и ее трехмерного спектрального представления (5) к двумерной спектральной плотности $F(k_{v}, k_{z}, x_{1} - x_{2})$.

Локально изотропное поле $\varepsilon(x, y, z)$ и его структурная функция могут быть разложены в двумерный интеграл Фурье в плоскости x = const [9]:

$$\varepsilon(x, y, z) = \varepsilon(x, 0, 0) + \int_{-\infty}^{\infty} \int \left[e^{j(k_y y + k_z z)} - 1 \right] u(dk_y, dk_z, x),$$

где $u(dk_y, dk_z, x)$ удовлетворяет соотношению

$$\langle u(dk_y, dk_z, x) \, u^*(dk'_y, dk'_z, x') \rangle = \delta(k_y - k'_y) \delta(k_z - k'_z) F(k_y, k_z, x - x') dk_y, dk_z, dk'_y, dk'_z.$$
(6)

В выражении (6) $F(k_y, k_z, x - x')$ – двумерная спектральная плотность, которая связана со структурной функцией $D_{\varepsilon}(\eta, \zeta, 0)$ в плоскости $\xi = x - x' = 0$ соотношением:

$$D_{\varepsilon}(\eta,\zeta,0) = 2 \int_{-\infty}^{\infty} \left[l \cdot \cos(k_y \eta + k_z \zeta) \right] F(k_y,k_z,0) dk_y, dk_z,$$
(7)

где $\eta = y - y'$, $\zeta = z - z'$, $\xi = x - x'$, штрихи обозначают координаты точек на плоскости x' = const, а ξ – расстояние между параллельными плоскостями x = const и x' = const.

В случае статистически изотропного поля двумерная и трехмерная спектральные плотности взаимосвязаны: $F(k_y, k_z, \xi) = \int_{-\infty}^{\infty} \cos(k_x \xi) \Phi(k) dk_x$.

Если поле диэлектрической проницаемости анизотропно, то для его описания с помощью двумерной спектральной плотности (энергетического спектра) $F(k_y, k_z, \xi)$ нужны дополнительные данные. В нашем случае, в соответствии с (5), дополнительная информация заключается в предположении, что в горизонтальной плоскости y = const поле статистически изотропно. Тогда корреляционная функция $R(\xi, \eta, \zeta)$ в плоскости y = const существует (если нет особенности в нуле) и зависит только от расстояния $\rho = (\xi^2 + \zeta^2)^{1/2}$, т.е. $R(\xi, \eta, \zeta) = R(\eta, \rho)$.

Трехмерная спектральная плотность (5) принимает конечные значения при $k \to 0$ и убывает с ростом k быстрее k^{-3} . Поэтому можно вычислить трехмерную корреляционную функцию

$$R(x-x', y-y', z-z') = R(\xi, \eta, \zeta) = \iint_{-\infty}^{\infty} \cos \mathbf{k} \, \mathbf{r} \Phi_{\varepsilon}(\mathbf{k}) d^{3}k ,$$

где ξ , η , ζ – координаты вектора \mathbf{r} .

Полагая $\xi = 0$ и выполняя преобразование Фурье от $R(0, \eta, \zeta)$, получим двумерную спектральную плотность флуктуаций в плоскости (*yoz*):

$$F(k_y, k_z, 0) = \operatorname{Re} \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} R(0, \eta, \zeta) e^{j(k_y \eta + k_z \zeta)} d\eta d\zeta.$$
(8)

Двумерная структурная функция $D_{\varepsilon}(\eta, \zeta, 0)$ связана с $F(k_y, k_z, 0)$ соотношением (7).

В ходе математического моделирования формировались выборочные функции (реализации) случайного поля $\varepsilon(y, z)$, спектральная плотность которых в среднем соответствовала модели (5). Для этого программно генерировалась двумерная последовательность $h_i(y, z)$ нормально распределенных случайных чисел с нулевым средним значением и равномерной средней спектральной плотностью. Затем применялась весовая обработка спектра. Пусть $G_i(k_y, k_z)$ – комплексное преобразование Фурье случайной числовой последовательности $h_i(y, z)$. Тогда модель выборочной функции $\varepsilon_i(y, z)$ вычисляется следующим образом:

$$\varepsilon_i(y,z) = \iint_{-\infty}^{\infty} G_i(k_y,k_z) \Big[f(k_y,k_z) \Big]^{\frac{1}{2}} e^{j(k_yy+k_zz)} dk_y dk_z,$$

где $f(k_y, k_z) = F(k_y, k_z, 0) / F(0, 0, 0)$ – весовая функция.

Спектральная плотность реализации $\varepsilon_i(y, z)$

$$F_{i}(k_{v},k_{z},0) = C \cdot G_{i}(k_{v},k_{z}) \cdot G_{i}^{*}(k_{v},k_{z}) \cdot f(k_{v},k_{z}),$$

где *С* – постоянная, а знак ^{*} обозначает комплексно сопряженную величину.

Усредняя последнее равенство по ансамблю выборочных функций, получим

$$\langle F_i(k_y,k_z,0)\rangle = C \cdot f(k_y,k_z) \cdot \langle G_i(k_y,k_z) \cdot G_i^*(k_y,k_z)\rangle = f(k_y,k_z) \cdot const.$$

Таким образом, среднее значение двумерной спектральной плотности с точностью до постоянного множителя совпадает с заданной весовой функцией. Иными словами, каждая выборочная функция $\varepsilon_i(y, z)$ принадлежит случайному полю с заданной спектральной плотностью $F(k_y, k_z, 0)$. Характерный вид весовых функций $f(k_y, k_z)$ для изотропной (*a*) и анизотропной (*b*) сред показан на рис. 1, *a*, *b*.

На рис.2 *а*, *б*, *в* приведены фрагменты выборочных функций $\varepsilon_i(y, z)$, вычисленных при разных значениях параметров *a*, *b* и *c* в выражении (5). Шаг дискретизации переменных *y* и *z* составляет 0,125*м*. Размерность числового массива 1024×1024. Ось *y* ориентирована перпендикулярно земной поверхности. На рис.2, *г* показан фрагмент изотропной и статистически однородной среды $\varepsilon(y, z)$, спектральная плотность которой соответствует выражению (2).

Двумерная структурная функция $D(\eta, \zeta, 0)$, рассчитанная для одной из выборочных функций $\varepsilon_i(y, z)$, приведена на рис.3, *a*. На рис. 3, *б* та же структурная функция изображена в другом масштабе.

Значения двумерной структурной функции $D(\eta, \zeta)$ в горизонтальном направлении при $\eta = 0$ и в вертикальном при $\zeta = 0$ приведены на рис. 4, *a* и 4, *б* соответственно. На рис. 4, *в*, *г* те же структурные функции изображены при малых значениях $|\eta|$ и $|\zeta|$. Сплошной жирной линией на всех графиках обозначена структурная функция статистически однородной тропосферы. Штриховой, пунктирной и сплошной линией показаны $D(\eta, \zeta)$, рассчитанные для выборочных функций $\varepsilon_i(y, z)$, полученных при разных значениях параметров *a*, *b* и *c* в выражении (5).

Из рис.4 видно, что существует две области локальной однородности, в пределах которых можно определить интегральные масштабы неоднородностей и радиусы корреляции ρ_1 , ρ_2 поля $\varepsilon(\mathbf{r})$. В одной области $\rho_1 \sim 20 \, M$, в другой – $\rho_2 \sim 0.3 \, M$. Радиус корреляции ρ_1 соизмерим с внешним масштабом неоднородностей L_0 , ρ_2 соответствует изотропным мелкомасштабным флуктуациям ε . Таким образом, если слой тропосферы, в котором распространяется пучок радиоволн, ограничен высотой H над земной поверхностью, то можно выделить, по крайней мере, две области локальной однородности поля $\varepsilon(\mathbf{r})$, и в каждой из них вычислить корреляционную функцию. Двумерная корреляционная функция флуктуаций поля оказывается многомасштабной. В области крупномасштабных флуктуаций характерный масштаб соизмерим с внешним масштабом турбулентности, для которого справедлива оценка $L_0 \approx 0.4 H$ [9]. В области малых масштабов радиус корреляции $\rho \ll L_0$.

Расчет коэффициента ослабления поля на коротких загоризонтных трассах с применением МГО и метода Кирхгофа [4], предусматривает учет только регулярного распределения

 $\varepsilon(h)$. В дециметровом диапазоне влиянием турбулентных флуктуаций ε , как показывает сравнение с экспериментальными данными, можно пренебречь, а при расчете амплитуды эквивалентных источников ограничиться «нулевым» приближением. Амплитуда $E_Q(y,z)$ в работе [4] рассчитывалась по интерференционным формулам [10].

В сантиметровом диапазоне обнаруживается «чувствительность» метода Кирхгофа к точности вычисления граничного поля E_Q при переходе от освещенной области к зоне тени. Для расчета среднеквадратического значения амплитуды вблизи границы геометрической тени в этом случае можно применить метод диффузии лучей [11, 12].

Расстояние от передатчика до плоскости Q, на которой вычисляются эквивалентные источники в работах [3, 4], составляет $R_0 \sim 10^4 ... 10^5 M$, интервал высот 0 < h < 300 M. При длине волны $\lambda = 3 cM$ для этих значений R_0 имеют место неравенства

$$R_0 \gg L_0 \gg \lambda, \ \sqrt{\lambda R_0} \ll L_0, \tag{9}$$

где $L_0 \approx 0,4h = 60 \, \text{м}$. В этом случае можно пользоваться лучевыми представлениями и рассматривать распространение луча как случайный процесс без последствия (непрерывную цепь Маркова) [12]. Тогда можно найти вероятность $w(\theta, x)$ того, что луч, вышедший из начала координат в направлении оси x и прошедший расстояние x, отклонится от плоскости *zox* на угол θ . В нашем случае θ не превышает $0,5^0$. Для таких малых углов функция углового распределения лучей $w(\theta, x)$ удовлетворяет уравнению Эйнштейна – Фоккера – Колмогорова [12]:

$$\frac{\partial w}{\partial x} = D \frac{\partial^2 w}{\partial \theta^2},$$

где *D* – коэффициент диффузии луча.

Коэффициент диффузии определяется через коэффициент корреляции N(x, y, z) и дисперсию флуктуаций показателя преломления $\langle n^2 \rangle$, вычисленные в пределах интервала локальной однородности:

$$D = -\langle n^2 \rangle \int_0^\infty \left[\frac{\partial^2 N}{\partial y^2} \right]_{y=z=0} dx,$$

причем под интегралом значение второй производной берется при y = z = 0.

Мелкомасштабные флуктуации, которые можно характеризовать корреляционной функцией, вычисленной в пределах интервала локальной однородности, создают равномерный фон [13]. Этот фон в радиодиапазоне не вносит существенных изменений в результаты расчета коэффициента ослабления.

В оптическом диапазоне для этих флуктуаций удовлетворяются неравенства (9), и их также можно учесть в расчетах методом диффузий лучей.

Нужно отметить, что неравенство $\sqrt{\lambda R_0} \ll L_0$ ограничивает допустимое значение пройденного волной расстояния R_0 , при которых применимы МГО и метод диффузии лучей. Поэтому метод эквивалентных источников может оказаться эффективным для приближенных оценок поля на загоризонтных трассах малой протяженности (до ~ 100 км).

Выводы

Вид структурной функции поля диэлектрической проницаемости $\varepsilon(\mathbf{r})$ в случае анизотропной среды отличается от «закона 2/3», характерного для зоны свободной конвекции, наличием области локальной однородности мелкомасштабных флуктуаций. В случае слоистой тропосферы в структурной функции можно выделить несколько участков локальной однородности. Эта особенность характерна практически для всех реализаций $\varepsilon(\mathbf{r})$. Интервал локальной однородности мелкомасштабных флуктуаций для выбранной модели среды составляет 0,2 – 0,3 *м*. Второй интервал соизмерим с внешним масштабом турбулентности и составляет 15 – 25 *м*.

При исследовании корреляционных функций мелкомасштабных флуктуаций первый из указанных интервалов можно рассматривать как максимальную протяженность реализации $\varepsilon_i(y,z)$, при которой оценки выборочных корреляционных функций и радиусов «быстрых» флуктуаций приводят к близким результатам для разных реализаций $\varepsilon_i(y,z)$. Увеличение объема $\varepsilon_i(y,z)$ выборок приводит к неоднозначным оценкам из-за неоднородности (нестационарности) поля $\varepsilon(y,z)$.

В пределах интервалов локальной однородности можно найти корреляционные функции и дисперсии мелкомасштабных и крупномасштабных флуктуаций диэлектрической проницаемости. Эти данные позволяют использовать метод диффузии лучей для расчета поля эквивалентных источников на границе геометрической тени.

Список литературы: 1. Хитни Г.В., Рихтер, Ю.Х., Папперт, Р.А., Андерсон, К.Д., Баумгартнер, *Дж.Б.* Распространение радиоволн в тропосфере : Обзор // ТИИЭР. – 1985. – Т.73. – N2. – С.106-128. 2. User's Manual for Advanced Refractive Effects Prediction System [Электронный ресурс] / Space and Naval Warfare Systems Center, Pacific Atmospheric Propagation Branch (5548) San Diego, CA. - 2009. -С. 1-336. Режим доступа: http://areps.spawar.navy.mil. 3. Петров, В.А., Клюева, А.Н., Павлова, О.Л. Оценка текущих условий загоризонтного распространения УКВ по заданному пространственному распределению коэффициента преломления воздуха // Радиотехника. - 2011. - Вып. 166. - С. 214 -222. 4. Жуков, Б.В., Клюева, А.Н., Петров, В.А. Оценка дистанционных зависимостей УВЧ радиополя над морем для произвольных высотных профилей коэффициента преломления воздуха // Радиотехника. – 2011. – Вып. 164. – С. 58 – 65. 5. Pavlova, O.L., Petrov, V.A. The Mathematical Modeling of Radiation Patterns of Receiving Antennas on Tropospheric Paths // Antenna Theory and Techniques. - 2011. - P. 282-284. 6. Shilyaeva, O. The Calculation of Azimuthal Distribution of Field on Tropospheric Paths. Fresnel Diffraction // Modern Problems of Radio Engineering, Telecommunications and Computer Science. – 2012. - Р.109. 7. Экспериментальное исследование дальнего тропосферного распространения ультракоротких радиоволн / Под ред. Я. С. Шифрина. – Харьков : АРТА, 1964. – 103 с. 8. Шарыгин, Г.С. Статистическая структура поля УКВ за горизонтом. – М. : Радио и связь, 1983. – 140с. 9. Татарский, В.И. Распространение волн в турбулентной атмосфере. - М. : Наука, 1967. - 548 с. 10. Калинин, А.И. Распространение радиоволн на трассах наземных и космических радиолиний. – М. : Связь, 1979. 296с. 11. Фейнберг, Е.Л. Распространение радиоволн вдоль земной поверхности. – М. : АН СССР, 1961. – 546 с. 12. Чернов, Л.А. Волны в случайно-неоднородных средах. – М. : Наука, 1977. – 170с. 13. Лобкова, Л.М. Статистическая теория антенн сверхвысоких и оптических частот. – М. : Связь, 1975. – 176с.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 11.08.2012