А.В. ПОНОМАРЕВА, канд. техн. наук, В.В. НЕВЛЮДОВА

ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ОПЕРАЦИИ УЛЬТРАЗВУКОВОЙ СВАРКИ НА НАДЕЖНОСТЬ МОНТАЖНЫХ СОЕДИНЕНИЙ

Введение

Сварочные процессы протекают по сложным физико-химическим законам при высокой температуре. Совокупность различных факторов и явлений определяет качество микросварных соединений. Особенно сильно это влияние сказывается при операции ультразвуковой сварки при монтаже микроэлетронных изделий на гибкую коммутационную плату, что является причиной снижения качества и работоспособности конструкции и приводит к ее разрушению.

Оптимизация технологической операции ультразвуковой микросварки (УЗ-микросварки), за счет выбора определенного сочетания технологических параметров процесса микромонтажа, является эффективным методом повышения прочности и надежности сварных микросоединений [1].

Цель проведенных исследований – разработка регрессионной модели процесса монтажа МЭИ посредством УЗ-микросварки и оценка ее параметров по результатам полного факторного эксперимента (ПФЭ) типа 2³, определение оптимальных режимов, которые обеспечивают максимальную надежность монтажных соединений. В качестве критерия оценки надежности микросоединений выбрана их прочность на отрыв.

Постановка задачи исследования

Основными достоинствами метода моделирования процессов при помощи факторного эксперимента являются простота и возможность отыскания экстремальной точки (с какой-то погрешностью), если неизвестная поверхность достаточно гладкая и нет локальных экстремумов.

Экспериментальные исследования проведены на базе технологических мощностей предприятий НВП «Хартрон-Энерго» (г. Харьков) совместно с ведущими специалистами данных организаций в рамках программы исследований предприятия.

Материалом для экспериментальных исследований выбран двухслойный алюминийполимидный тестовый образец гибкой коммутационной платы (ГКП), основные конструктивные параметры которого приведены в табл. 1.

	Таблица
Конструктивные параметры тестового образца	Значение
Габаритные размеры ГКП:	
- длина, мм	70
- ширина, мм	140
- толщина, <i>мкм</i>	50
Ширина проводников:	
- нижнего слоя, мкм	210
- верхнего слоя, мкм	100
Шаг между проводниками:	
- нижнего слоя, мкм	300
- верхнего слоя, мкм	200

Качество и надежность получаемых монтажных соединений y(x) в основном зависит от следующих технологических режимов (факторов) [2]:

- выходной мощности УЗ-генератора $x_1(Bm)$;

- времени сварки *x*₂ (*мс*);

- усилия, прилагаемого к рабочему инструменту $x_3(2)$.

Поставлена задача нахождения математического описания процесса монтажа в окрестностях базовой точки с координатами $x_{01}=2$ *Bm*, $x_{02}=350$ *мc*, $x_{03}=40$ *г*, с использованием ПФЭ.

Решение общей задами можно разбить на несколько этапов:

а) вычисление построчного среднего значения функции отклика и дисперсий отклика в каждой точке плана эксперимента;

б) проверка однородности построчных дисперсий;

в) определение коэффициентов математической модели;

г) определение дисперсии воспроизводимости;

д) оценка статистической значимости коэффициентов модели;

е) оценка адекватности модели и данных экспериментов, формирование выводов о возможности применения разработанной модели;

ж) оптимизация модели процесса монтажа.

ПФЭ проводили при заданных начальных условиях, приведенных в табл.2.

			Таблица 2
Характеристика плана	$x_1(Bm)$	$x_2(\mathcal{MC})$	$x_3(\mathcal{E})$
эксперимента			
Основной уровень	2	350	40
Интервал варьирования	1	100	20
Верхний уровень	3	450	60
Нижний уровень	1	250	20
Область допустимых	(0,025÷16)	(0,15÷0,55)	(15÷80)
значений факторов			

На основе исходных данных (табл. 1-2) и результатов натурных испытаний построена матрица планирования ПФЭ 2³, представленная в виде табл. 3.

Таолица												
Ho-	Факторы эксперимента							Отк.	лики			
мер-	(режимы УЗ-сварки)						(прочно	сть монта:	жных соед	цинений)		
точки плана	x_0	x_1	x_2	<i>x</i> ₃	x_1x_2	<i>x</i> ₁ <i>x</i> ₃	$x_2 x_3$	$x_1x_2x_3$	<i>Y</i> 1 <i>i</i>	Y2i	Узі	$\overline{\mathcal{Y}}_i$
1	+	-	-	-	+	+	+	-	16	16,5	16,8	16,43
2	+	-	-	+	+	-	-	+	18,5	18,3	18,9	18,57
3	+	-	+	-	-	+	-	+	15,9	16,3	16,7	16,3
4	+	-	+	+	-	-	+	-	18,9	18,4	19	18,77
5	+	+	-	-	-	-	+	+	15,9	16	16,2	16,04
6	+	+	-	+	-	+	-	-	19,3	19,5	19,8	19,54
7	+	+	+	-	+	-	-	-	17	17,2	17,5	17,24
8	+	+	+	+	+	+	+	+	19,9	20	20,4	20,1

Произведены вычисления построчного среднего значения функции отклика и дисперсий отклика в каждой точке плана эксперимента. Для любой *i*-й точки среднее значение выходной величины вычисляется по формуле (1)

$$\overline{y}_i = \sum_{u=1}^m \widetilde{y}_{iu} / m.$$
⁽¹⁾

- -

Построчная дисперсия выходной величины определяется выражением (2)

$$S^{2}\{y_{i}\} = \sum_{u=1}^{m} (y_{iu} - \overline{y}_{i})^{2} / (m-1).$$
⁽²⁾

ISSN 0485-8972 Радиотехника. 2012. Вып. 170

Результаты расчета среднего значения выходной величины \bar{y}_i в каждой точке (для каждой строки m=3) приведены в табл.3.

Определена построчная дисперсия выходной величины \bar{y}_i в каждой точке (для каждой строки m=3):

$$S^{2}{y_{1}} = 0,1634; S^{2}{y_{2}} = 0,0934; S^{2}{y_{3}} = 0,16; S^{2}{y_{4}} = 0,1034; S^{2}{y_{5}} = 0,0234;$$

 $S^{2}{y_{6}} = 0,0634; S^{2}{y_{7}} = 0,0634; S^{2}{y_{8}} = 0,07.$

Определено расчетное значение коэффициента Кохрэна [3]

$$G_{p} = S^{2} \{ y_{i} \}_{\max} / \sum_{i=1}^{N} S^{2} \{ y_{i} \}.$$
(3)

Сравнение расчетного значения коэффициента Кохрэна с критическим значением *G*- критерия $G_T[3 - 4]$ показало, что т.к. условие $G_{p<}$ G_T выполняется, можно сделать вывод об однородности всех построчных дисперсий с выбранным уровнем статистической значимости $\alpha=0,05$.

Проверив построчные дисперсии на однородность, определили оценки коэффициентов модели по формуле

$$b_k = \sum_{i=1}^N \widetilde{y}_{ik} x_{ik} / N.$$
(4)

где *k* – номер вектор-столбца (табл.1).

Вычислены коэффициенты

$$b_0 = 17,87; b_1 = 0,3563; b_2 = 0,2288; b_3 = 1,3713; b_{12} = 0,2113; b_{13} = 0,2188; b_{23} = -0,0388; b_{123} = -0,1213.$$

Оценка дисперсии воспроизводимости (оценка усредненных построчных дисперсий) в соответствии с результатами вычислений определялась согласно выражению

$$S_B^2 = \sum_{s=1}^N S^2 \{y_i\} / N,$$

$$S_B^2 = 0,0926.$$
(5)

Дисперсия коэффициента b_k определяется с учетом свойства нормировки, оценки коэффициентов найдены с одинаковой дисперсией:

$$S^{2}\left\{b_{k}\right\} = S_{B}^{2} / N \cdot m, \tag{6}$$

$$S^{2}{b_{k}} = 0,0926 / 8 \cdot 3 = 0,0039; S{b_{k}} = 6 \cdot 10^{3} = 0,0624.$$

Оценка статистической значимости коэффициентов модели произведена по критерию Стьюдента. Влияние *k*-го фактора, отклонение *k*-го коэффициента от нуля учитывается следующим коэффициентом [3]

$$t_{k} = |b_{k}|/S \{y_{i}\}.$$
(7)

При выбранном уровне статистической значимости (α =0,05) по таблицам Стьюдента [4] найдено табличное значение коэффициента t_T . Нуль-гипотеза будет принята в том случае, если будет выполняться неравенство

$$t_k < t_T. \tag{8}$$

Расчетные значения коэффициента Стьюдента *t*_k для найденных оценок коэффициентов

$$b_k$$
: $t_0 = 286,38$; $t_1 = 5,71$; $t_2 = 3,67$; $t_3 = 21,98$; $t_{12} = 3,39$; $t_{13} = 3,51$; $t_{23} = 0,62$; $t_{123} = 1,94$

Неравенство (8) выполняется только для коэффициентов t_{23} и t_{123} . Следовательно, можно предположить, что они являются статистически незначимыми и их следует исключить из уравнения регрессии.

Таким образом, уравнение регрессии технологической операции УЗ-микросварки, содержащее статистически значимые коэффициенты, будет (в кодированной системе) иметь вид

$$\hat{y} = 17,87 + 0,3563 x_1 + 0,2288 x_2 1,3713 x_3 + 0,2113 x_1 x_2 + 0,2188 x_1 x_3.$$
(9)

Полученное уравнение регрессии проверено на адекватность исследуемому объекту при помощи критерия Фишера [3]. Результаты проверки показали, что полученная модель (9) является адекватной и достаточно хорошо аппроксимирует экспериментальные данные.

Оптимизация процесса УЗ-микросварки

Оптимизация процесса микросварки представляет собой целенаправленный поиск значений влияющих факторов, при которых достигается экстремум критерия оптимальности (с учетом ограничений, наложенных на все влияющие факторы и функции отклика).

Существует несколько методов оптимизации результатов факторного эксперимента [3, 5, 6]. Наиболее простым, наглядным и точным является так называемый метод «крутого восхождения».

Анализ результатов ПФЭ показывает, что для дальнейшей оптимизации процесса микромонтажа применение метода «крутого восхождения» будет эффективным, так как полученная линейная модель (9) адекватна и не является резко асимметричной относительно коэффициентов.

Расчет методом «крутого восхождения» проведен в несколько последовательных этапов.

На первом этапе рассчитана величина шага движения по градиенту прочности монтажных сварных соединений. Расчет произведен по стандартной методике, исходя из значений коэффициентов регрессии [1].

С этой целью переход к новому натуральному масштабу интервалов варьирования осущетвлен с помощью формулы

$$L_i = b_i \delta_i, \tag{10}$$

где b_i – коэффициенты регрессии; δ_i – единицы варьирования.

Рассчитано, что $L_1 = 0,36$; $L_2 = 23$; $L_3 = 27,4$. Абсолютная величина $|L_{max}|$ имеет наибольшее значение для фактора погружение рабочего инструмента, следовательно, этот фактор принят в качестве базового. Для остальных факторов новые коэффициенты рассчитывают по формуле

$$\gamma_i = \frac{L_i}{L_{\max}},\tag{11}$$

где γ_i – новые коэффициенты при значимых факторах.

Рассчитанные коэффициенты составлены для факторов:

- мощность УЗ-генератора – $\gamma_1 = 0.01$;

- время сварки – $\gamma_2 = 0.84$;

- нагружение рабочего инструмента – $\gamma_3 = 1$.

На следующем этапе для базового фактора (x_3) выбран модуль шага движения по градиенту (h_i). Учитывая, что $\delta_{\dot{a}\dot{a}_{c,3}} = 20$, принимаем $h_{\dot{a}\dot{a}_{c,3}} = 18$. Далее рассчитываются шаги движения остальных факторов:

$$h_i = h_{\dot{a}\dot{a}c.3}\gamma_i. \tag{12}$$

Округляя значения h_1 , h_2 , получим следующие шаги движения по градиенту: h_1 =0,18; h_2 =15,12.

На последнем этапе рассчитаны условия и результаты опытов «крутого восхождения» (мысленных опытов) по модели (9). Значения факторов, определяющих условия опытов, определяются по формуле

$$X_{ji} = X_{j-1,i} + h_i, (13)$$

где j – номер опыта; i – номер фактора.

Результаты расчета условий мысленных опытов приведены в табл. 4

			Таблица -
Характеристика плана эксперимента	x_1	x_2	<i>x</i> ₃
Интервал варьирования (δ_i)	1	100	20
Базовый (основной) уровень	2	350	40
Коэффициент регрессии (b_i)	0,3563	0,2288	1,3713
Произведение $L_i = b_i \delta_i$,	0,36	23	27,4
Коэффициент (γ_i)	0,01	0,84	1
Шаг движения (<i>h</i> _{<i>i</i>})	0,18	15,12	18
Область допустимых значений факторов	(0,025÷16)	(0,15÷0,55)	(15÷80)

Движение по градиенту считали эффективным, если реализация мысленных опытов, рассчитанных на стадии «крутого восхождения», приводит к увеличению значения параметра оптимизации (прочности монтажных соединений) по сравнению с наилучшим результатом в матрице полного факторного эксперимента. Режимы ТО УЗ-сварки и прочность сварных монтажных соединений, выявленная в результате мысленных и реализованных опытов методом «крутого восхождения» приведены в табл. 5.

					Таблица :
№ опыта	x_1	x_2	x_3	Умысл.	Уреал.
1	2,18	365,12	58	26,5	25,7
2	2,36	380,24	76	28,7	27,7
3	2,54	395,36	94	30,9	27,1

Как видно, прочность сварных микросоединений, выявленная в реализованном опыте N_2 составила 27,7 *г*. Кроме того, реализован опыт N_2 , в котором при движении по градиенту, фактор x_1 достигал границ допустимых значений, при этом значение параметра оптимизации начало уменьшаться, что дало сигнал о прекращении движения по градиенту, т.к. оптимум найден (табл. 5).

Выводы

На основании проведенных исследований можно заключить, что применение метода крутого восхождения в данном случае оказалось эффективным в реализованном опыте №2 (27,7 *г*), видим, что прочность монтажного соединения увеличивается в 1,34 раза.

В результате эксперимента по плану «крутого восхождения» определены оптимальные режимы УЗ-микросварки: мощность УЗ-генератора 2,5 *Вт*, время сварки – 380 *мс*, нагружение рабочего инструмента – 0,76 Н.

Список литературы: 1. *Невлюдов, И.Ш., Проценко, М.А. и др.* Использование метода планирования экспериментов при оптимизации процесса микромонтажа многослойных конструкций гибких коммутационных структур // Вісник НТУ «ХПІ». – Харків : НТУ «ХПІ». – 2012. – Вип. №9. – С. 30-35. 2. *Грачев, А.А.* Ультразвуковая микросварка. – М. : Энергия, 1977. -184 с. 3. *Саутин, С.Н.* Планирование эксперимента в химии и химической технологии. – М. : Химия, 1975. – 50с. 4. *Налимов, В.В.* Логические основания планирования эксперимента. – М. : Металлургия, 1981. – 155 с. 5. *Моисеев, Н.Н.* Элементы теории оптимальных систем. – М. : Наука, 1975. – 526 с. 6. *Ахназарова, С.Л.* Методы оптимизации эксперимента. – М. : Высш. шк., 1985. – 327 с.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 04.09.2012