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MARKOVIAN APPROACH TO  

MAN-MACHINE-ENVIRONMENT SYSTEMS  
 

Introduction 

A Man–Machine- Environment systems  (MME)  includes such tow  subsystems  as "human"  

and  "environment"  that are of random  nature . This means that random phenomena that are taken 

 into account , are subject to certain static patterns  , which  are  not mandatory requirements. 

The purpose of this work is to investigate the MME  system as a kind of  Markovian  process . 

The condition of static stability can be  used in decision-making effective mathematical methods in 

the  theory of random processes and , in particular , Markov processes application for the MME this

 approach is rarer new  [1] . 

Despite the above-mentioned simplicity and clarity ,  the practical application of  the theory of 

 Markov chains  requires  knowledge  of  some  basic  terms  and provisions . 

The ergodic chain can be regular or cyclic. Cyclic chains differ from the regular in that process 

of transition after a certain number of steps (cycles) will return in any state. Regular chains do not 

have this property. We can give the following classification of Markov processes (Fig. 1): 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Homogeneous Markov chain as the model of MME-process 

The main characteristics of Markov chains are the probabilities 

                                          ,...2,1;,...,1  knikSPkP ii  

of states )(kS i
at k-th step. 

If the transition probabilities do not depend on step k, then  Markov chain is called homogene-

ous. If at least one probability varies with the step k, the chain is called non-homogeneous. The 

transition probabilities are written in the form of a square matrix of order n. The sum of the ele-

ments for each row is 1. 
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Fig. 1. Classification of Markov processes 
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The presence of the arrows in marked graphs with the corresponding transition probabilities 

from one state to another means that these probabilities are different from zero. Probability of delay 

 nipii ,...,1   can be obtained as   
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Row  vector  of  probabilities of  states     0,...,01 nPP  at t = 0, is called the vector of initial 

probability distribution . 
 

The n-step transition probability 

The probability for transition from state i   to state j  after n  steps is called "The n-step transi-

tion probability" , and is denoted by the symbol )  n
ijP ) . It is defined the following relationship 
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This matrix )(nP  is called the transition probability matrix after step n. 
 

Chapman-Kolmogorov equations 

If  ,2,1,0: nX n
 is the Markov , chain and the number of states m is limited if the transi-

tion probability matrix is  ijpP    then : 
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Where : 
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Example (1) : for a crew of professional that fits some damage in the system in 3 steps 
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1-P01 1-(P10+P12) 1-(P20+P21+P23) 1-(P30+P31+P32) 

P01 P12 P23 

P10 P21 P32 

P31 P20 

P30 
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Let p01=0.5 , p21=0.5 , p20=0.5 , p30=0.5 , p32=0.5 , p10=0.5 ,  p12=0.5 , p23=0.5 , p31=0.5.  

The eigenvalues of this system we get from the following relation    0 IPDet it gives the 

characteristic polynomial : 

05.05.0 234   

The eigenvalues and the appropriate vectors we get by using Mathematica 7: 
    

1 = 1 The eigenvector is (1,1,1,1) 

2 =0  The eigenvector is (-1,1,1,1) 

3  = -1 The eigenvector is (-1/3,1,5/3,1) 

4  = -0.5 The eigenvector is (1,-2,1,1) 
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Absorbing Markov chains 

A state Si of a Markov chain is called absorbing if it is impossible to leave it (i.e., Pii = 1). A 

Markov chain is absorbing if it has at least one absorbing state, and if from every state it is possible 

to go to an absorbing state (not necessarily in one step). And a state which is not absorbing is called 

transient. 

So far, we have focused on regular Markov chains for which the transition matrix P is primi-

tive. Because permittivity requires P(i, i) < 1 for every state i, regular chains never get “stuck” in a 

particular state. However, other Markov chains may have one or more absorbing states. By defini-

tion, state i is absorbing when P(i, i) = 1 (and hence P(i, j) = 0 for all j   i). In turn, the chain itself 

is called an absorbing chain when it satisfies two conditions. First, the chain has at least one absorb-

ing state. 

Second, it is possible to transition from each non-absorbing state to some absorbing state (per-

haps in multiple steps). Consequently, the chain is eventually “absorbed” into one of these states.[4] 
 

Example (2): represent the mortal case happened while fitting the damage of the MME – sys-

tem  
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Similarly to the example (1) we get , the eigenvalues and the appropriate vectors: 

1 = 1 The eigenvector is (1,1,1,1) 

2 =1/2  The eigenvector is (0,1,0,0) 

3  = 1/2 The eigenvector is (0,1,2,0) 

0 1 2 3 
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4  = 1/2 The eigenvector is (4,1,2,0) 

Then : 
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Example (3): shows the state of operator's health. State "0" is mortal . 

 

 

 

 

 

 

 

 

We get as before: 
 

 1 = 1 The eigenvector is (1,1,1,1) 

2 =1/4  The eigenvector is (0,0,0,1) 

3  = 1/4 The eigenvector is (0,0,4,1) 

4 = 1/4 The eigenvector is (0,16,-12,1) 
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Model (1):  

Let the person responsible for the impact (crash) react with the determined sequence of n tech-

nological operations, the duration of which is exponentially distributed with parameter μi. 

It is natural to consider the operations of an emergency as the state space. S0 is the state of ex-

pected trouble-free operation of the system. The Kolmogorov equation for the probability of states 

in the natural condition of normalization ΣPi (t) ≡ 1 we construct in a standard way. The limit as t 

→ ∞ of the probability Pi exists, they are stationary and do not depend on the initial probability dis-

tribution.  

When P'i (t) = 0 and ΣPi = 1, solving the resulting recurrence algebraic equations, we obtain, 

very similar to the classical formula of Erlang, the limiting state probabilities: 
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Model (2):  

With all the assumptions of the previous model, time and quality of operations for emergency 

response depends on the human operator’s health, which, in turn, depends on the state of the system 

(and the harmful effects of stress). We assume that the operator can be in two states of health, and 

call them "healthy" and "sick", assuming the probability of recovery of health in the process of li-

0 1 2 3 

P00 1-P10 1-(P20+P21) 1-(P30+P31+P32) 

P10 P21 P32 

P31 P20 
P30 



 ІSSN 0485-8972 Радиотехника. 2012. Вып. 170 18 

quidation of the accident is zero, and the probability of being sick during the i-th operation is bi. Af-

ter completing all the work (and before the time of the next emergency comes) the operator's health 

is restored, or he is replaced. Then the transition probabilities for each pair of neighboring states of 

the operator is biμi and (1-bi) μi . The state of the system, the intensity of rehabilitation and the 

probabilities regarded to incomplete performance of the operator, respectively, are ib, μb and Pib. 

From the recurrence relations obtained in the limiting case of the corresponding equations of 

Kolmogorov [5], with the notation:  
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we get with  k = 2, ..., n : 
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The probabilities P* = Pi Pib, 1 – P*0 and P0b are usually of practical interest. 

In conclusion, we note that the assumption under which the queuing system adequately simu-

lates our system is that the flow of events is stationary. For very small λ << 1 it is valid for the con-

sidered flow.  

However, from the exponential distribution of lengths of intervals between accidents follows 

that short intervals are most likely. Thus, the QS model is best suited for rescue teams, for which 

the disaster is a "steady state". Experiments in MathCAD for the case   n= 3, 5, 10 (the number of 

operations in the processing chain to address the accident) and λ= 0.3, 0.1, 0.05, i  = 0.8 for  P(S0) 

= 1 has confirmed that the settling time is t 5. In this case, an average time is less than the time of 

the system’s operation (1 / + n /  ). 

The above proposed model is naturally extended to the case of other different disasters (Erlang 

flow and absorbing states), but now it becomes clear that the accident, and even more disasters have 

different distributions, i.e., power distribution. This leads to more sophisticated than QS mathemati-

cal models, which do not fit the classical theorem by Khintchin [5] on the convergence to a simple 

flow. 
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