А.А. БУЛАНЫЙ, Г.В. МАЙСТРЕНКО, А.А. СТРЕЛЬНИЦКИЙ, канд. техн. наук, В.М. ШОКАЛО, д-р техн. наук

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПОМЕХОЗАЩИЩЕННОСТИ И СПЕКТРАЛЬНОЙ ЭФФЕКТИВНОСТИ WI-FI КАНАЛОВ СВЯЗИ С ЛИНЕЙНЫМИ И ДВУМЕРНЫМИ АДАПТИВНЫМИ АНТЕННЫМИ РЕШЕТКАМИ ПРИ ВОЗДЕЙСТВИИ НЕСКОЛЬКИХ ПОМЕХ И ОДНОГО СИГНАЛА

Введение

Исследованию каналов связи с адаптивными антенными решетками (ААР) посвящено много работ (например, [1 – 4]), в которых описаны алгоритмы адаптации, а также схемы адаптивных антенн. Однако в этих работах пока не проведены детальные исследования малоэлементных ААР, которые нашли применение в рэлеевских Wi-Fi каналах связи. В частности, не изучены уровни помехозащищенности и производительности Wi-Fi каналов связи с малоэлементными линейными и двумерными адаптивными антенными решетками при воздействии нескольких помех и флуктуации направления их прихода. Частичная ликвидация этого пробела для частного случая прихода сигнала с направления близко к нормали ААР и является целью данной статьи.

Постановка и решение задачи

Проведем исследование помехозащищенности и спектральной эффективности Wi-Fi каналов связи с линейными и двумерными AAP при воздействии нескольких помех и одного сигнала. Для этого будем использовать алгоритм, разработанный авторами для рэлеевских Wi-Fi каналов связи в [5]. Все расчеты проведем для случая изотропных излучателей и при условии, что мощность тепловых шумов по отношению к мощности помехи очень мала и ею можно пренебречь. При этом будем считать, что уровень помехозащищенности оценивается вероятностью битовой ошибки BER. Значение BER в рэлеевском канале связи для бинарной модуляции вычисляется по формуле [6]:

$$BER = \frac{1}{2} \left(1 - \sqrt{\frac{\rho}{\rho + 1}} \right),$$

где ρ – отношение сигнал-помеха (ОСП) рэлеевского канала связи на входе приемника.

Спектральная эффективность СЭ рэлеевского канала определяется выражением [6]

$$C_{\mathfrak{I}} = -\frac{1}{\ln 2} e^{\frac{1}{\rho} \int_{-\infty}^{-\rho} \frac{e^{t}}{t}} dt$$

В качестве ОСП р будем принимать отношение мощностей приходящих полезного и помехового сигналов, умноженное на отношение значений полученной оптимальной диаграммы направленности (ДН) по мощности в направлении полезного и помехового сигналов:

$$\rho = \frac{\mathbf{P}_{\mathrm{C}}}{\mathbf{P}_{\mathrm{II}}} \cdot \frac{F_{C}}{\sum_{j} F_{\Pi j}},$$

где $\frac{P_C}{P_{\Pi}}$ – отношение мощностей сигнала (P_C) и помехи (P_{Π}); $F_C = F(\Theta_C, \varphi_C)$ – значение ДН по мощности в направлении полезного сигнала; $\sum_j F_{\Pi j}$ – сумма по всем помехам (*j*=1,2,3) значений ДН, усредненных по секторам флуктуации помеховых сигналов.

Так как в разработанном алгоритме направление прихода помехи является случайной величиной с известной плотностью распределения, то значение ДН в направлении помехового сигнала также является случайной величиной и его среднее значение вычисляется по формуле

$$F_{\Pi} = \int_{\Theta_{\Pi}-\delta}^{\Theta_{\Pi}+\delta} \int_{\varphi_{\Pi}-\delta}^{\varphi_{\Pi}+\delta} F(\varphi,\theta) \cdot g(\varphi,\theta) \, d\varphi \, d\theta \, ,$$

где $g(\phi, \theta)$ – плотность распределения направления прихода помехи в секторе 26.

Численные исследования

Исследования проводились на четырехэлементных антенных решетках – линейной и квадратной. Изменения формы ДН в зависимости от количества помех приведены на рис. 1.

Расчеты выполнялись для решеток с шагом $d/\lambda=0,7$. ДН линейной антенны изображены на рис.1, *a* – *b*, квадратной – рис.1, *c* – *e*.

Во всех примерах направление прихода сигнала Θ_C было принято 80°, а направления прихода помех Θ_{Π} были выбраны: 20° – для случая одной помехи; 20° и 135° – для случая двух помех; 20°, 135° и 40° – для случая трех помех. Ширина секторов флуктуации помех одинакова для всех помех и равна ±3°.

ДН адаптивной антенны, рассчитанные в присутствии помех, изображены на рис.1 сплошной линией, а штрих-пунктиром показаны оптимальные по максимуму ОСП ДН ААР без учета влияния помех.

Как видно из рисунков, форма ДН для данного угла прихода сигнала не существенно зависит от количества помех, и для того чтобы понять где хуже «работает» алгоритм адаптации, составлены табл. 1 – 3, в которых представлены итоговые параметры ААР. Проанализируем их.

Максимумы нормированных ДН по мощности в направлении прихода сигнала $F(\Theta_C)$ в линейной и квадратной решетках отличаются менее чем на два порядка. Зато минимумы ДН в направлении прихода помех в случае одной помехи (см.табл.1) для квадратной ААР на четыре и более порядков меньше, чем для линейной ААР. Этим и определяется выигрыш в отношении сигнал/помеха ρ для квадратной антенны по сравнению с линейной. В свою очередь увеличение ρ приводит к существенному улучшению параметров BER и СЭ в квадратной решетке. Из табл. 1 следует, что квадратная ААР обеспечивает высокое качество передачи информации (BER < -40 *dБ*) при любом шаге решетки d/ λ . С помощью же линейной ААР реализуется только среднее качество с BER < -20 *dБ*, при этом производительность канала уменьшается практически в два с половиной раза по сравнению со случаем применения квадратной ААР.

								-
Тип	Линейная	Квадрат-	Линейная	Квадрат-	Линейная	Квадрат-	Линейная	Квадратная
антенн	AAP	ная ААР	AAP	ная ААР	AAP	ная ААР	AAP	AAP
d/λ	0.3		0.5		0.7		1.0	
F_C	0.95	0.02	1	0.41	1	0.20	0.73	0.11
$F_{\Pi I}$	9.32×10 ⁻⁴	1.11×10 ⁻⁹	8.12×10 ⁻⁴	2.62×10 ⁻⁸	8.81×10 ⁻⁴	1.90×10 ⁻⁸	9.70×10 ⁻⁴	5.46×10 ⁻⁸
ρ, дБ	30.07	72.52	30.90	71.99	30.54	70.27	28.75	62.86
<i>BER</i> , дБ	-36.09	-78.54	-36.93	-78.01	-36.56	-76.29	-34.78	-68.88
С _Э , <u>бит</u> с∙Гц	9.17	23.26	9.44	23.08	9.32	22.51	8.73	20.05

Таблица 1

Рис.1. ДН линейной и квадратной ААР с шагом решетки $d/\lambda=0.7$ при направлении полезного сигнала $\Theta_C = 80^\circ$ и разного количества помех (одной помехи – *a*, *c*, двух помех – *b*, *d*, трех помех – *b*, *e*)

Ситуация существенно изменяется при воздействии двух (табл. 2) и трех (табл. 3) помех. Как видно из табл. 2, 3, с ростом числа помех значения F_{Π} увеличиваются, что приводит к уменьшению величины BER, особенно в квадратной AAP. При этом линейная и квадратная AAP обеспечивают достижение только среднего качества передачи информации.

Таблица 2

Тип	Линейная	Квадрат-	Линейная	Квадрат-	Линейная	Квадрат-	Линейная	Квадратная	
антенн	AAP	ная ÂAP	AAP	ная ÂAP	AAP	ная ÂAP	AAP	AAP	
d/λ	0	.3	0.5		0	0.7		1.0	
F_C	0.98	0.25	1	0.84	0.93	0.94	0.10	0.61	
$F_{\Pi I}$	1.62×10 ⁻³	1.14×10 ⁻³	9.30×10 ⁻⁴	5.99×10 ⁻⁴	9.27×10 ⁻⁴	1.08×10 ⁻³	4.91×10 ⁻³	9.59×10 ⁻³	
$F_{\Pi 2}$	1.16×10 ⁻³	1.76×10 ⁻⁴	8.97×10 ⁻⁴	6.57×10 ⁻⁴	9.33×10 ⁻⁴	1.25×10 ⁻⁵	2.77×10 ⁻³	8.22×10 ⁻⁴	
ρ, дБ	29.29	22.81	28.38	28.28	27.00	29.35	11.05	17.67	
<i>BER</i> , дБ	-31.51	-28.85	-33.41	-34.30	-33.03	-35.37	-17.32	-23.75	
$C_{\mathfrak{I}}, \frac{бит}{\mathbf{c} \cdot \Gamma \mathbf{u}}$	7.66	6.79	8.28	8.58	8.16	8.93	3.19	5.15	

Таблица 3

Тип	Линейная	Квадрат-	Линейная	Квадрат-	Линейная	Квадрат-	Линейная	Квадратная
антенн	AAP	ная ĀAP	AAP	ная ААР	AAP	ная ĀAP	AAP	AAP
d/λ	0	.3	0.5		0	0.7		.0
F_C	0.67	0.04	0.80	0.81	0.92	0.94	0.39	0.24
$F_{\Pi 1}$	1.93×10 ⁻³	1.57×10 ⁻⁵	9.00×10 ⁻⁴	2.34×10 ⁻⁴	9.31×10 ⁻⁴	1.23×10 ⁻³	5.38×10 ⁻³	9.88×10 ⁻⁴
$F_{\Pi 2}$	6.01×10 ⁻³	5.71×10 ⁻⁴	1.17×10 ⁻³	1.81×10 ⁻³	9.27×10 ⁻⁴	1.03×10 ⁻³	0.03	5.75×10 ⁻³
$F_{\Pi 3}$	1.92×10 ⁻³	2.80×10 ⁻⁵	9.62×10 ⁻⁴	4.69×10 ⁻⁴	9.15×10 ⁻⁴	2.07×10 ⁻³	7.17×10 ⁻³	1.23×10 ⁻³
ρ, дБ	18.29	17.96	24.20	25.07	25.22	23.36	9.65	14.72
<i>BER</i> , дБ	-24.36	-24.03	-30.23	-31.10	-31.25	-29.40	-16.00	-20.85
$C_{\mathcal{F}}, \frac{бит}{c \cdot \Gamma \mathfrak{u}}$	5.34	5.24	7.24	7.52	7.57	6.97	2.81	4.25

Так как приведенные в табл.2,3 данные получены при ОСП приходящих сигналов равном единице, данные для BER при других значениях ОСП на входе ААР сведены в табл. 4.

С ростом ОСП значения BER улучшаются и можно определить те значения ОСП на входе решетки, при которых обеспечивается не только среднее и высокое качество передачи информации в канале.

Важно знать зависимость BER от ширины зоны флуктуации помехи 2δ. Эти графики изображены на рис. 2 (при воздействии одной помехи), на рис. 3 (при воздействии двух помех) и на рис. 4 (при воздействии трех помех). Квадратная решетка явно выигрывает в случае одной помехи. При этом высокое качество передачи информации обеспечивается до величины $\delta \approx 17^{\circ}$ (см. рис. 2). Линейная же ААР позволяет реализовать только среднее качество передачи информации (BER > -40 ∂E) во всем диапазоне углов δ от 1° до 20°.

Таблица 4.

Линейная ААР						Квадратная ААР				
ΟCΠ d/λ	1	10	100	1000	1	10	100	1000		
При воздействии одной помехи										
0,3	-36.09	-46.09	-56.09	-66.09	-78.54	-88.54	-98.54	-108.54		
0,5	-36.93	-46.93	-56.93	-66.93	-78.01	-88.01	-98.01	-108.01		
0,7	-36.56	-46.56	-56.56	-66.56	-76.29	-86.29	-96.29	-106.29		
1,0	-34.78	-44.77	-54.77	-64.77	-68.88	-78.88	-88.88	-98.88		
	При воздействии двух помех									
0,3	-31.51	-41.50	-51.50	-61.50	-28.85	-38.84	-48.84	-58.84		
0,5	-33.41	-43.41	-53.41	-63.41	-34.30	-44.30	-54.30	-64.30		
0,7	-33.03	-43.02	-53.02	-63.02	-35.37	-45.37	-55.37	-65.37		
1,0	-17.32	-27.10	-37.01	-47.01	-23.75	-33.70	-43.69	-53.69		
При воздействии трёх помех										
0,3	-24.36	-34.32	-44.31	-54.31	-24.03	-33.99	-48.98	-53.98		
0,5	-30.23	-40.22	-50.22	-60.22	-31.10	-41.09	-51.09	-61.09		
0,7	-31.25	-41.24	-51.24	-61.24	-29.40	-39.38	-49.38	-59.38		
1,0	-16.00	-25.7	-35.67	-45.68	-20.85	-30.76	-40.75	-50.74		

Рис.2. Зависимость BER для линейной AAP (сплошная линия) и квадратной AAP (пунктирная линия) при воздействии одной помехи

Рис. 3. Зависимость BER для линейной AAP (сплошная линия) и квадратной AAP (пунктирная линия) при воздействии двух помех

Как уже отмечалось, при воздействии двух помех канал связи с квадратной AAP имеет величину BER соответствующую среднему качеству передачи информации (см.рис.3) и при $\delta > 4^{\circ}$ проигрывает линейной AAP, которая позволяет достичь при $1^{\circ} \le \delta \le 20^{\circ}$ качество передачи информации не хуже – 33 ∂E . В случае же трех помех, величина BER еще ухудшается и для квадратной AAP при значении сектора флуктуации помехи δ от 15° до 20° соответствует только низкому качеству передачи информации. Ситуация может быть улучшена только за счет увеличения ОСП более чем в 10 раз.

Сопоставляя достоинства и недостатки линейных и двумерных ААР, необходимо обсудить вопрос о сложности их технической реализации. Для этого следует сравнить амплитудно-фазовые распределения (АФР) обеих решеток (см.табл.5,6). В таблицах через A_i обозначены значения нормированных амплитуд на входах излучателей а через φ_i – значения фаз. Нетрудно сделать вывод, что оба варианта ААР одинаковы по сложности реализации, т.к. и в том, и в другом случае требуется обеспечение не только заданного фазового, но и амплитудного распределения.

1/0		•								
d/λ	A_1	A_2	A_3	A_4	ϕ_1	ϕ_2	ϕ_3	ϕ_4		
При воздействии одной помехи										
0,3	0.95	1	1	0.95	4,32	0	22,70	18,38		
0,5	0.64	1	1	0.64	0	15,36	70,70	86,06		
0,7	0.48	1	1	0.48	0	44,32	76,06	123,38		
1,0	0.86	1	1	0.86	232,57	0	40,26	163,69		
При воздействии двух помех										
0,3	1	0.98	0.98	1	337,00	54,35	0	77,35		
0,5	0.39	1	1	0.39	0	32,22	61,32	93,55		
0,7	0.36	1	1	0.36	0	26,33	53,24	76,56		
1,0	0.85	1	1	0.85	0	277,91	129,48	47,39		
		Γ	Іри воздей	ствии трёх	к помех					
0,3	1	0.98	0.98	1	0	267,89	27,47	295,35		
0,5	0.43	1	1	0.43	0,02	0	3,75	3,73		
0,7	0.37	1	1	0.37	0	24,76	50,58	75,36		
1,0	1	0.81	0.81	1	0	142,52	31,92	174,43		

Таблица 5

Таблица 6

d/λ	A ₁	A ₂	A ₃	A_4	ϕ_1	φ ₂	φ ₃	ϕ_4		
При воздействии одной помехи										
0,3	1	0.85	1	0.85	147.88	60.97	0	86.91		
0,5	1	0.72	1	0.72	36.39	0	10.19	46.58		
0,7	1	0.64	1	0.64	282.33	288.91	6.59	0		
1,0	1	0.57	1	0.57	183.27	245.31	62.04	0		
	При воздействии двух помех									
0,3	1	0.89	1	0.89	141.97	0	84.83	226.80		
0,5	1	0.90	1	0.90	105.66	0	41.39	147.04		
0,7	0.83	1	0.83	1	322.76	286.51	323.75	0		
1,0	0.27	1	0.27	1	264.90	0	140.76	45.66		
		Ι	Іри воздей	ствии трёх	к помех					
0,3	1	0.97	1	0.97	176.02	72.21	0	103.81		
0,5	1	0.96	1	0.96	63.09	6.38	0	56.71		
0,7	0.85	1	0.85	1	332.32	278.04	305.72	0		
1,0	1	0.85	1	0.85	149.47	268.57	69.05	0		

Выводы

Для частного случая прихода сигнала с направления близко к нормали AAP получены новые результаты сравнительного анализа помехозащищенности и спектральной эффективности Wi-Fi каналов связи с малоэлементными линейными и квадратными AAP, которые заключаются в следующем:

- показано, что при воздействии одной помехи на ААР канал связи с квадратной решеткой существенно выигрывает по параметрам BER и СЭ по сравнению со случаем использования линейной ААР за счет реализации более глубоких нулей ДН в направлении прихода помехи;
- предложена модель расчета BER и СЭ при воздействии нескольких помех, основанная на предположении, что помехи являются аддитивными, они имеют одинаковый равномерный закон распределения прихода помехи в секторе (Θ_Π ± δ), 1° ≤ δ ≤ 20°.
- с использованием предложенной модели расчетным путем выяснено, что в случае воздействия нескольких помех нули в ДН квадратных ААР "заплывают" больше, чем в линейных, что приводит к более плохим результатам по качеству передаваемой информации и производительности канала.

Список литературы: 1. Уидроу, Б., Стирнз, С. Адаптивная обработка сигналов : пер. с англ. – М. : Радио и связь, 1989. – 440 с. 2. Титаренко, Л.А. Адаптивная пространственная обработка сигналов в условиях априорной неопределенности. – Х. : ХНУРЭ; Коллегиум, 2004. – 216с. 3. Быховский, М.А. Приём широкополосных сигналов с помощью адаптивных антенн // Мобильные системы. – 2006. – №8. – С. 21-27. 4. Дурманов, М.А., Широков, И.Б. Адаптивная антенная система базовой станции стандарта GSM 900 // Электроника и связь. – 2009. – Вып. 1(48). – С. 76-81. 5. Майстренко, Г.В., Рыбалко, А.М., Стрельницкий, А.А., Шокало, В.М. Влияние случайного изменения направления прихода помехи на помехозащищенность Wi-Fi канала связи с адаптивными антеннами // Радиотехника. – 2012. – Вып. 169. – С. 168-175. 6. Ермолаев, В.Т., Флаксман, А.Г. Теоретические основы обработки сигналов в системах мобильной радиосвязи. – Режим доступа: http://www.unn.ru/pages/elibrary/methodmaterial/files/56.pdf.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 04.09.2012