В.И. ЛЕОНИДОВ, канд. техн. наук

МОДЕЛЬНО-СТРУКТУРНЫЙ АНАЛИЗ ЭХОСИГНАЛОВ АКУСТИЧЕСКОГО ЗОНДИРОВАНИЯ АТМОСФЕРЫ

Введение

Объектом наблюдения акустического локатора являются турбулентные моли в поле температуры и скорости, которые создают неоднородности волнового сопротивления воздушной среды. В общем случае цели такого типа относятся к объемно-распределенным, так как в импульсном объеме может наблюдаться более одного объекта рассеяния акустической волны.

Турбулентные моли формируются в процессе теплообмена между подстилающей поверхностью и атмосферой, и поэтому их «плотность», теплосодержание и температурный контраст определяются режимом баланса тепла между подстилающей поверхностью и атмосферой. Следовательно, характер цели акустического локатора зависит от типа термодинамического состояния атмосферы.

Относительно модели «мгновенной цели» акустического локатора выдвигаем следующую гипотезу: цель представляет собой горизонтально-слоистую среду, которая характеризуется «скачками» волнового сопротивления по вертикали, при этом горизонтальными градиентами в пределах импульсного объема можно пренебречь.

В структуре цели выделим переходные зоны (зона скачка) и зоны слоев. В пределах зоны слоя, ограниченного импульсным объемом, будем считать волновое сопротивление среды постоянной величиной ρ_{s} = const.

Вертикальная протяженность ∂h_i (толщина) зоны скачка отвечает условию $\partial h_i \ll \lambda_s$. Приращение температуры dT_i в переходном слое отвечает неравенству $dT_i >> \sigma_{T_6}$, а градиент температуры в зоне «скачка» $dT_i/dh_i >> \gamma_a$, где λ_s – длина акустической волны, σ_{T_6} – ср.кв. отклонение поля температуры, γ_a – сухоадиабатический температурный градиент.

При таких допущениях параметры эхосигналов, полученных при реальном акустическом зондировании, представляют собой случайную последовательность импульсов, длительность которых не меньше длительности зондирующего импульса.

Цель настоящей работы состоит в создании и апробации методики модельно-

структурного анализа эхосигналов, которая позволит изучать свойства турбулентных молей температурного поля атмосферы как целей акустического локатора. Работа является дальнейшим развитием исследований, начатых в этой области в работах [1 – 2]. Экспериментальный материал, пример которого анализируется в настоящей работе, был получен автором на станции акустического зондирования атмосферы, созданной в Харьковском национальном университете радиоэлектроники. Экспериментальные наблюдения проводились в летние периоды времени 2011 и 2012 годов. На рис.1 приведен внешний вид антенных систем станции акустического зондирования атмосферы.

Рис.1 Антенные системы станции акустического зондирования атмосферы

Модельно-структурный анализ эхосигналов

Результатом акустического зондирования атмосферы является реализация эхосигналов, организованная в виде $(m \times n)$ матрицы S_a цифровых отсчетов эхосигналов $s_{i,j}$, где i = 1...m, j = 1...n, причем столбцы матрицы представляют собой вертикальные одиночные профили эхосигналов $s_j(i)$ и, следовательно, каждая строка $s_i(j)$ матрицы S_a представляет собой ряд дискретных отсчетов эхосигналов для данной высоты $h_i = \Delta h \cdot i$, где Δh – дискретный шаг высоты.

Так как $h = c_s \cdot t$, где c_s – скорость распространения акустических волн в атмосфере, t – время, то профиль эхосигналов есть также и функция времени $s_i = F(t)$.

На рис. 2 приведен фрагмент реализации эхосигналов, продолжительностью $T_{\Delta} \cong 10$ *мин*, что позволяет визуализировать детальную структуру эхосигнала.

акустического зондирования

Целью анализа является выявление структурных особенностей реализаций эхосигналов. Предположим, что реализация $s_j(i)$ эхосигналов есть случайная последовательность эхоимпульсов, принятая системой за один период повторения T_s зондирующих импульсов $T_s = \Delta t \cdot m$, где Δt – интервал времени на дискретный шаг высоты. Для принятой реализации $s_j(i)$ определим статистические частоты p^* возникновения импульсных эхосигналов s_{τ} , длительностью $\tau_e \geq \tau_r$, где τ_e – длительность зондирующего импульса, τ_r – длительность импульсных эхосигналов в принятой последовательности.

Расчет проведем методом модельно-корреляционного анализа реализации $s_i(i)$.

Примем модель одиночного импульса в принятой реализации в виде

$$s_p = -\cos(2\pi \cdot x_p/T_p) \tag{1}$$

где $x_p = 1...p$, p – число дискретных отсчетов на длительность модели, T_p – период модельной функции в дискретных отсчетах, $p = k_p \cdot T_p$, где k_p принимает значения $k_p = 1; 2; T_p$ – переменная величина, ее значения определяются из выражения $T_p(n_p) = k_p \cdot (T_\circ + n_p)$, где $n_p = 1...n_m$, n_m – максимальное число итераций изменения периода модельной функции, k_p – постоянный масштабный коэффициент.

Далее, для каждого из значений T_p рассчитываются коэффициенты корреляции $k_r(q)$ между моделью s_p и фрагментом реализации эхосигнала $s_j(i)$, длительность которого $T_{\Delta s}$ отвечает условию $T_{\Delta s} = p$:

$$k_r(q, T_p = const) = \frac{1}{\sigma_s \cdot \sigma_p} \sum_{i=q}^{q+p-1} s_j^{\circ}(i) \cdot s_p^{\circ}(i-q+1)$$
(2)

где q = 1...(m-p), $\sigma_{s,p}$ – ср.кв.отклонения фрагмента реализации эхосигналов и модели импульсного эхосигнала соответственно.

Каждый отсчет полученной зависимости $k_r(q)$ сравнивается с пороговым значением g и формируется $(n_m \times m)$ матрица B, члены строк которой принимают значения из условия B(i, j) = 1 при $k_r \ge g$ и B(i, j) = 0 при $k_r < g$.

Если принять g = 0.8, то можно считать, что сумма членов строк матрицы *B* представляет собой число случаев приема эхосигналов в виде импульсов, определяемых моделью s_p . Тогда статистическая частота определится из выражения

$$p^{*}(i) = \frac{1}{m - p_{i}} \sum_{j=1}^{n_{m}} B_{i}(j)$$
(3)

Для анализа был выбран фрагмент эхограммы, указанный на рис.2 стрелкой. Был проведен структурный анализ реализаций эхосигналов и помех. Для этого соответствующие реализации формировались по областям эхограммы, указанным на рис.2 разделительной линией.

Результаты расчетов приведены на рис. 3, *a*, *б* и 4, *a*, *б* соответственно для двух видов моделей. В правом верхнем углу рисунков приведены графики функций, описывающих модели. На рис. 3, *a* и 4, *a* приведены распределения сигналов, на рис. 3, *б* и 4, *б* – помех. Ординаты графиков изображены в виде полос, напоминающих гистограмму для удобства восприятия величины p^* .

Рис.3. Рапределение статистической вероятности реализации эхосигналов

Выводы

Полученные результаты показывают, что при использовании модели в виде одного периода косинусного сигнала статистическая вероятность появления такого вида сигналов имеет вид сплошного распределения в области значений длительностей импульсов $\tau_r = (2 \div 68) \cdot 10^{-3} c$ (длительность зондирующего импульса $\tau_e = 2.9 \cdot 10^{-3} c$). Из этого следует, что в импульсном объеме наблюдаются «скачки» волнового сопротивления среды с интервалами $\delta h_i \ll \Delta h$, где Δh – разрешающая способность системы по дальности, для данной системы зондирования $\Delta h \cong 0.5 m$.

Рис.4. Распределение статистической вероятности реализации эхосигналов

Распределение помехи примерно вдвое уже, чем распределение сигналов. Это говорит о том, что в черте мегаполиса превалируют импульсные акустические помехи.

При использовании модели в виде двух периодов косинусного сигнала распределение сигналов становится линейчатым. Следовательно, упорядоченные структуры существуют в турбулентном поле температуры только при определенных масштабах длины.

Распределение помех в этом случае так же, как и в предыдущем случае, близко к сплошному, но в более узкой полосе периодов.

Основным результатом работы является создание методики структурного анализа эхосигналов акустического зондирования и формализованное подтверждение гипотезы о пространственно распределенном характере цели – турбулентных молей в поле температуры.

Выводы относительно структуры полей акустических помех и сигналов следует рассматривать как предварительные, так как они следуют из обработки относительно небольшого объема экспериментальных данных.

Из полученных результатов также следует, что перспективным направлением в развитии аппаратной части систем акустического зондирования является повышение их разрешающей способности по дальности, что позволит измерить мощность эхосигнала, рассеянного отдельным турбулентным молем.

Список литературы: 1.*Семенец, В.В.* Акустическое зондирование атмосферы в проблеме изучения процессов теплообмена в зоне мегаполиса / В.В. Семенец, В.И. Леонидов // Восточно-европейский журнал передовых технологий. – 2011. – 6/8(54). – С.54. 2. *Леонидов, В.И.* Анализ квазипериодических амплитудно-временных структур эхосигналов акустического зондирования атмосферы / В.И. Леонидов, В.В. Семенец // Радиотехника. – 2011. – Вып.167. – С. 27 -31.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 07.09.2012