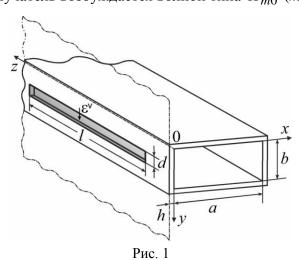
С. Л. БЕРДНИК, канд. физ.-мат. наук


ИЗЛУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН ЭЛЕКТРИЧЕСКИ ДЛИННОЙ ЩЕЛЬЮ С ДИЭЛЕКТРИЧЕСКИМ ЗАПОЛНЕНИЕМ В УЗКОЙ СТЕНКЕ МНОГОМОДОВОГО ПРЯМОУГОЛЬНОГО ВОЛНОВОДА

Введение

При практической реализации высоких технических характеристик радиотехнических комплексов, решении задач электромагнитной совместимости целесообразным является применение многофункциональных многочастотных излучающих структур. В случае волноводно-щелевых излучателей бегущей волны представляет интерес реализация многочастотной антенны на основе электрически длинной щели в узкой стенке многомодового прямоугольного волновода, возбуждаемого несколькими волноводными модами типа H_{m0} на разных частотах. Но, в отличие от щелевого излучателя в широкой стенке волновода, электродинамические характеристики которого можно оптимизировать путем смещения щели к середине волновода с одновременным увеличением ее ширины [1], для щели в узкой стенке получить такой результат невозможно [2, 3]. Улучшить характеристики направленности таких щелевых излучателей (уменьшить уровень боковых лепестков диаграммы направленности (ДН), увеличить коэффициенты направленного действия (КНД) и усиления (КУ)) можно за счет увеличения толщины стенки волновода [4], реализации спадающего к краям щели амплитудного распределения поля при определенных соотношениях между длиной щели и длинами волн в свободном пространстве и в волноводе [1, 2], а также при использовании диэлектриков в полости щели [2].

Постановка задачи и решение

Рассмотрим продольную щель длиной l и шириной d (L>>d , $d<\lambda$, λ — длина волны в свободном пространстве), которая прорезана в узкой стенке конечной толщины h прямо-угольного волновода с размерами поперечного сечения $a\times b$. Полость щели заполнена диэлектриком с относительной диэлектрической проницаемостью $\dot{\varepsilon}^{\nu} = \varepsilon^{\nu} (1-i\operatorname{tg}\delta^{\nu})$ (рис. 1). Волноводно-щелевой излучатель возбуждается волной типа H_{m0} (m=1,2,3...).

Учет толщины стенки волновода сводится к решению задачи о связи трех электродинамических объемов: полости волновода (индекс "in"), полости щели (индекс "v") и внешнего объема (индекс "ext"), который в нашем случае представляет собой полупространство над бесконечной идеально проводящей плоскостью. Из условий непрерывности тангенциальных составляющих магнитного поля на поверхностях щели ς_1 (волновод – щель) и ς_2 (щель – внешнее полупространство) получаем систему функциональных уравнений для определения касательных составляющих электрических полей \vec{e}_{ς_1} и \vec{e}_{ς_2} на поверхностях этих щелей:

на
$$\varsigma_1$$
: $\vec{H}_{\tau}^{in}(\vec{e}_{\varsigma_1}) + \vec{H}_{0\tau}^{(\mu)} = \vec{H}_{\tau}^{\nu}(\vec{e}_{\varsigma_1}) + \vec{H}_{\tau}^{\nu}(\vec{e}_{\varsigma_2}),$
на ς_2 : $\vec{H}_{\tau}^{\nu}(\vec{e}_{\varsigma_1}) + \vec{H}_{\tau}^{\nu}(\vec{e}_{\varsigma_2}) = \vec{H}_{\tau}^{ext}(\vec{e}_{\varsigma_2}),$ (1)

где $\vec{H}_{\tau}^{in}(\vec{e}_{\zeta_1})$, $\vec{H}_{\tau}^{ext}(\vec{e}_{\zeta_2})$, $\vec{H}_{\tau}^{v}(\vec{e}_{\zeta_1})$, $\vec{H}_{\tau}^{v}(\vec{e}_{\zeta_2})$ – тангенциальные составляющие магнитного поля, возбуждаемого электрическими полями \vec{e}_{ζ_1} и \vec{e}_{ζ_2} на соответствующих поверхностях щелей в объемах "in", "ext", и "v", $\vec{H}_{0\tau}^{(\mu)}$ – магнитное поле волны во внутренней области, возбуждающее щель (" μ " – обобщенный индекс, обозначающий тип волны).

Для решения задачи определения тангенциальных составляющих электрического поля на поверхностях щели был применен метод Галеркина с использованием ограниченного количества тригонометрических базисных функций полной области. Электрическое поле на поверхностях ς_1 и ς_2 представлено в виде линейной комбинации координатных базисных функций \vec{e}_{q1} и \vec{e}_{q2} :

$$\vec{e}_{\zeta_1} = \sum_{q=1}^{Q} V_{q1} \vec{e}_{q1}, \ \vec{e}_{\zeta_2} = \sum_{q=1}^{Q} V_{q2} \vec{e}_{q2}. \tag{2}$$

Так как L>>d и $d<\lambda$, то можно считать, что электрическое поле направлено поперек щели и постоянно в этом направлении. Тогда векторные функции \vec{e}_{q1} и \vec{e}_{q2} имеют вид

$$\vec{e}_{q1} = \vec{e}_{q2} = \vec{y}^0 \frac{1}{d} \sin \frac{q\pi}{l} z, \tag{3}$$

где \vec{y}^0 – орт вдоль оси $\{0y\}$.

Количество и номера собственных функций щели выбираются исходя из соотношений между длиной щели и длинами волн в свободном полупространстве и в волноводе [2]. Задача сводится к решению системы линейных алгебраических уравнений (СЛАУ) относительно искомых коэффициентов в разложении электрического поля на щели V_{q1} и V_{q2} :

$$\begin{cases} \sum_{q=1}^{Q} V_{q1}(Y_{pq,11}^{in} + Y_{pq,11}^{v}) + \sum_{q=1}^{Q} V_{q2}Y_{pq,12}^{v} = F_{p1}^{(\mu)}, & p = 1, 2...Q \\ \sum_{q=1}^{Q} V_{q1}Y_{pq,21}^{v} + \sum_{q=1}^{Q} V_{q2}(Y_{pq,22}^{v} + Y_{pq,22}^{ext}) = 0, & p = 1, 2...Q \end{cases}$$

$$(4)$$

Матричные элементы СЛАУ — частичные проводимости щели $Y_{pq,mn}^{in,v,ext}$ (m=1,2, n=1,2) определяются следующим образом:

$$Y_{pq,mn}^{in,v,ext} = \int_{\varsigma_m} \left[\vec{e}_{pm}, \vec{H}^{in,v,ext} \left(\vec{e}_{qn} \right) \right] \vec{n}^{in,v,ext} d\varsigma, \tag{5}$$

где $\vec{n}^{in,v,ext}$ — орты нормалей к поверхностям интегрирования, обращенные внутрь соответствующих областей.

Так как векторы \vec{e}_{q1} и \vec{e}_{q2} направлены поперек щели, в выражении для проводимостей (5) будет присутствовать только проекция вектора магнитного поля на ось щели $H_z^{in,v,ext}$. Это поле в каждом из объемов может быть определено с помощью магнитных тензорных функций Грина $\hat{G}_m^{in,v,ext}(\vec{r},\vec{r}')$ [5] для векторного потенциала [6]:

$$H_z^{in,v,ext}\left(\vec{e}_{qn}\right) = \frac{\vec{z}^0}{4\pi i\omega\mu_a} \left(\frac{\partial^2}{\partial z^2} + k^2\right) \int_{\varsigma_n} \left[\vec{e}_{qn}, \vec{n}^{in,v,ext}\right] \hat{G}_m^{in,v,ext}\left(\vec{r}, \vec{r}'\right) d\varsigma,$$

где \vec{z}^0 – орт вдоль оси $\{0z\}$.

Правая часть системы уравнений (4) сформирована парциальными магнитодвижущими силами [6]:

$$F_{p1}^{(\mu)} = \int_{\zeta_1} \left[\vec{e}_{p1} \vec{H}_{0\tau}^{(\mu)} \right] \vec{n}^{ext} d\zeta.$$

Решение системы уравнений (4) позволяет определить поля \vec{e}_{ζ_1} и \vec{e}_{ζ_2} , а следовательно, и электродинамические характеристики щелевого излучателя: коэффициенты излучения и отражения, диаграмму направленности, коэффициент направленного действия, коэффициент усиления.

В предположении, что волновод возбуждается волной единичной мощности, коэффициент излучения можно найти следующим образом:

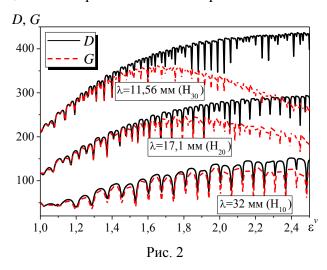
$$|S_{\Sigma}|^2 = \frac{1}{2} \operatorname{Re} \sum_{p=1}^{Q} \sum_{q=1}^{Q} V_{p2} V_{q2}^* Y_{pq,22}^{ext},$$

где V_{q2}^* — комплексно сопряженная величина.

Диаграмма направленности электрически длинной щели в плоскости вектора \vec{H} с учетом (2), (3) определяется выражением

$$F_{H}(\theta) = \sin \theta \sum_{q=1}^{Q} V_{q2} \frac{q\pi l \left(1 - \left(-1\right)^{q} e^{ikl\cos \theta}\right)}{\left(q\pi\right)^{2} - \left(kl\cos \theta\right)^{2}},$$

где угол θ отсчитывается от продольной оси щели.

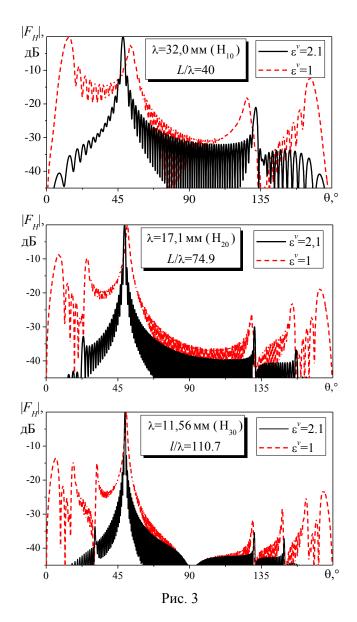

Коэффициент усиления волноводно-щелевого излучателя можно определить по формуле $G = D\eta = D \mid S_{\Sigma} \mid^2$, где D – коэффициент направленного действия, η – коэффициент полезного действия, который в случае пренебрежения потерями в стенках волновода совпадает с коэффициентом излучения.

Численные результаты

Как показали исследования, при заполнении полости электрически длинной щели $(L>(20\div30)\lambda)$ диэлектриком с небольшим значением диэлектрической проницаемости $\varepsilon^{\nu}\approx 1, 2\div 2, 5$ можно значительно понизить уровень боковых лепестков ДН, увеличить КНД и КУ излучателя при возбуждении как основным типом волны, так и высшими модами.

Наличие диэлектрика в полости щели приводит к уменьшению осцилляций в амплитудном распределении поля вдоль щели и, как следствие – к улучшению характеристик направленности.

В качестве примера рассмотрим щель с размерами l=1280 мм, d=1 мм и h=1 мм, прорезанную в середине узкой стенки прямоугольного волновода сечением $a\times b=23\times 5$ мм² при возбуждении волной типа H_{10} с длиной волны в свободном пространстве $\lambda=32,0$ мм, волной типа H_{20} с $\lambda=17,1$ мм и волной типа H_{30} с $\lambda=11,56$ мм. Длины волн выбраны таким образом, чтобы главные лепестки диаграмм направленности щелевого излучателя на данных длинах волн имели одинаковое направление. Графики на рис. 2 иллюстрируют влияние диэлектрика в полости щели на энергетические и направленные свойства щели.



Как видно из рис. 2, благодаря заполнению полости щели диэлектриком можно значительно увеличить КНД и КУ излучателя (по сравнению со случаем $\epsilon^{\nu}=1$) при возбуждении как основным типом волны, так и высшими типами волн. С возрастанием значения диэлектрической проницаемости диэлектрика ϵ^{ν} КНД в среднем увеличивается, стремясь к значению, определяемому как $4l/\lambda$, а КУ при некоторой величине ϵ^{ν} , зависящей от электрической длины щели, достигает максимального значения и при дальнейшем росте ϵ^{ν} уменьшается, что связано с уменьшением коэффициента излучения щели.

Значения коэффициентов излучения $|S_{\Sigma}|^2$, коэффициентов направленного действия D и усиления G щели, полость которой заполнена диэлектриком с параметрами $\varepsilon^{\nu}=2,1$, $\operatorname{tg} \delta^{\nu}=10^{-4}$ приведены в таблице, где также представлены значения соответствующих параметров для полой щели ($\varepsilon^{\nu}=1$).

Тип волны	λ, мм	l	$ S_{\Sigma} ^2$		D		G	
		$\overline{\lambda}$	$\varepsilon^{\nu} = 2,1$	$\varepsilon^{v}=1$	$\varepsilon^{v}=2,1$	$\varepsilon^{v} = 1$	$\varepsilon^{\nu} = 2,1$	$\varepsilon^{v}=1$
H_{10}	32,0	40	0,94	0,97	135,8	50,3	128,0	48,7
H_{20}	17,1	74,9	0,82	0,98	279,6	117,7	229,8	117,3
H_{30}	11,56	110,7	0,76	0,99	425,2	210,1	324,4	210,0

Диаграммы направленности щели, заполненной диэлектриком, при возбуждении волнами H_{10} , H_{20} и H_{30} представлены на рис. 3. Введением диэлектрика в полость щели удается уменьшить уровни боковых лепестков и ширину главного лепестка диаграмм направленности. Для сравнения на рисунке приведены ДН полой щели с такими же размерами. Они имеют гораздо более высокие уровни боковых лепестков и более широкие главные максимумы.

Таким образом, заполнение полости электрически длинной щели диэлектриком позволяет увеличить коэффициент направленного действия и коэффициент усиления излучателя, прорезанного в узкой стенке прямоугольного волновода, возбуждаемого основным и высшими типами волн. Это дает возможность реализовать на основе такой щели многочастотный излучатель при возбуждении волновода несколькими типами волн на разных частотах.

Список литературы: 1. *Катрич, В.А., Лященко, В.А., Бердник, С.Л.* Электрически длинные волноводно-щелевые антенны с оптимальными излучающими и направленными характеристиками // Известия вузов. Радиоэлектроника. − 2003. − №2. С.51 − 60. 2. *Катрич, В.А. Лященко, В.А., Бердник, С.Л., Пшеничная, С.В.* Оптимизация характеристик излучения электрически длинных продольных щелей в узкой стенке прямоугольного волновода // Радиофизика и радиоастрономия. − 2004. − №4. − С.439-447. 3. *Уолтер, К.Х.* Антенны бегущей волны. − М. : Энергия, 1970. − 447 с. 4. *Lampariello, P., Frezza, F., Shigesawa, H., Tsuji, M., Oliner A.A.* Versatile Leaky-Wave Antenna Based On Stub-Loaded Rectangular Waveguide // IEEE Trans. Antennas and Propagat. − 1998. − Vol. 46, No. 7. − P. 1032 − 1055. 5. *Nesterenko, M.V., Katrich, V.A., Penkin, Y.M., Berdnik, S.L.* Analytical and Hybrid Methods in the Theory of Slot-Hole Coupling of Electrodynamic Volumes. − New York: Springer Science+Business Media, 2008. − 146 p. 6. *Фельд, Я.Н., Бененсон, С.Л.* Антенно-фидерные устройства. − М. : Изд-во ВВИА им. Жуковского, 1959. − Ч. 2. − 551 с.

Харьковский национальный университет имени В.Н. Каразина

Поступила в редколлегию 20.09.2012