О. Л. ШИЛЯЕВА, В. А. ПЕТРОВ, канд. физ.-мат. наук СТРУКТУРА ЗОН МНОГОЛУЧЕВОСТИ И КАУСТИК ПРИ РАСПРОСТРАНЕНИИ РАДИОВОЛН ЗА РАДИОГОРИЗОНТ

Введение

Возможность применения дифракционного интеграла Френеля – Кирхгофа для вычисления поля за радиогоризонтом вблизи границы геометрической тени подробно анализируется в работе [1]. Там же приведены результаты исследований этого вопроса В.А. Фоком [2] и К. Фуруцу [3]. Такой путь расчета, дополненный вычислением неоднородного поля в области интегрирования (метод эквивалентных источников) применен в работах [4, 5] для оценочного расчета множителя ослабления V вблизи радиогоризонта и за его пределами по измеренному высотному профилю диэлектрической проницаемости $\varepsilon(h)$. Метод эквивалентных источников (МЭИ) позволяет наиболее просто оценить поле в переходной области от зоны дифракции к зоне дальнего тропосферного распространения. Для расчета граничного поля используются методы геометрической оптики. Порядок расчета и расчетные соотношения изложены в работе [5]. Рассчитанные с помощью МЭИ дистанционные зависимости множителя ослабления V(R) при различных условиях распространения для длин волн $\lambda = 4 \ cm$ и $\lambda = 30 \, cm$ удовлетворительно согласуются с экспериментальными данными. Точность полученных оценок в большинстве случаев в загоризонтной области получается выше, чем системах ТУСУР и AREPS, если судить по данным работы [6]. Однако при некоторых высотных профилях $\varepsilon(h)$ на отдельных загоризонтных участках трассы расхождения расчетных и экспериментальных значений V превышают 10 дБ.

Как отмечается в работе [7], при распространении волн в случайно-неоднородной среде можно выделить области маловероятного образования каустик и область, где вероятность появления каустик соизмерима с единицей и возможны сильные изменения амплитуды поля. Расхождения расчетных и экспериментальных данных могут быть связаны с нарушением условий применимости первого приближения геометрической оптики и с образованием случайных каустик, так как для оценки поля использовался упрощенный алгоритм расчета, не учитывающий каустические сдвиги фазы.

Цель работы – анализ зон многолучевости и пространственной структуры каустик при расчете поля за радиогоризонтом методом эквивалентных источников.

Зоны многолучевости и каустики

В МЭИ, так же как и в геометрической теории дифракции [8], используется представление о лучевом распространении радиоволн. Поэтому пределы применимости метода, по существу, определяются пределами применимости используемых приближений геометрической оптики. Первое приближение применимо при выполнении неравенств [9]:

$$\lambda | grad\varepsilon | << \varepsilon, \qquad \sqrt{\lambda L} << l_0, \qquad \left\langle \chi^2 \right\rangle << 1,$$
 (1)

где L – дистанция, пройденная волной, $\langle \chi^2 \rangle$ – дисперсия логарифма амплитуды, l_0 – внут-

ренний масштаб неоднородностей среды. Условие $\sqrt{\lambda L} \ll l_0$ накладывает весьма жесткие ограничения на дистанцию L при расчетах оптического пути (эйконала), если l_0 соответствует мелкомасштабным изменениям профиля $\varepsilon(h)$. Однако совместное применение геометрической оптики и дифракционного интеграла позволяет существенно ослабить это неравенство при малых углах дифракции θ .

Действительно, если известно граничное поле E_Q на некоторой плоскости Q в средней части трассы, то выражение для расчета поля $E(\mathbf{R}_1)$ в точке наблюдения \mathbf{R}_1 имеет вид [5]:

$$E(\mathbf{R}_1) = C \int_{Q_1} e^{-j\mathbf{K}\mathbf{r}} E_Q(\mathbf{r}) d^2 r, \qquad (2)$$

где C – постоянная, $\mathbf{K} = \mathbf{k}_s - \mathbf{k}_0$, \mathbf{k}_0 и \mathbf{k}_s – волновые векторы первичной (падающей) и вторичной волн, \mathbf{r} – двумерный радиус-вектор элемента поверхности dQ на плоскости Q.

Поскольку предполагается, что $E_Q = 0$ за пределами ограниченной области Q_1 , пределы интегрирования в (2) можно заменить бесконечными, и тогда видно, что $E_Q(\mathbf{r})$ и $E(\mathbf{R}_1)$ связаны преобразованием Фурье. Так как $\mathbf{K} = \mathbf{k}_s - \mathbf{k}_0$, то $|\mathbf{K}| = 2|\mathbf{k}_0|\sin(\theta/2)$, где θ – угол между векторами \mathbf{k}_s и \mathbf{k}_0 (угол дифракции). В нашем случае углы дифракции не превышают значения $|\theta_m| \approx 0,4^0$. Для $|\theta| \le |\theta_m|$ получаем

$$\left|\mathbf{K}\right| \approx \left|\mathbf{k}_{0}\right| \,\boldsymbol{\theta} \le \left|\mathbf{k}_{0}\right| \,\boldsymbol{\theta}_{m} = \frac{2\pi}{\lambda} \boldsymbol{\theta}_{m} \,. \tag{3}$$

Поле эквивалентных источников

$$E_Q(\mathbf{r}) = A(\mathbf{r}) \exp\{-jk\varphi_1(\mathbf{r})\}$$
(4)

выражается через амплитуду $A(\mathbf{r})$ и поправку к эйконалу ϕ_1 , вычисленную в первом приближении метода малых возмущений:

$$\varphi_1(\mathbf{r}) = \frac{1}{2} \,\widetilde{\varepsilon}(\mathbf{r}) L \,, \tag{5}$$

где $\tilde{\epsilon}(\mathbf{r})$ – случайная составляющая диэлектрической проницаемости воздуха.

Если поле $E_S(\mathbf{R}_1)$ рассчитывается в ограниченном интервале углов θ и, соответственно, волновых чисел $|\mathbf{K}|$, то как видно из (2), (4), (5), это эквивалентно исключению высших составляющих из спектра функций $A(\mathbf{r})$ и мелкомасштабных флуктуаций – из $\tilde{\epsilon}(\mathbf{r})$. Тогда при $|\theta| < |\theta_m|$ второе неравенство (1) можно заменить более слабым:

$$\sqrt{\lambda L} \ll l_m = \frac{2\pi}{|K|} = \frac{\lambda}{|\Theta_m|} \,. \tag{6}$$

Например, если $\theta_m \approx 0.4^0$, а $\lambda = 0.04 M$, то $l_m \approx 5.7 M$.

Условие (6) позволяет определить дистанцию L, в пределах которой флуктуации уровня амплитуды A, рассчитанные в первом приближении геометрической оптики, удовлетворяют неравенству

$$\left\langle \chi^2 \right\rangle = \left\langle \left[\ln(A/A_0) \right]^2 \right\rangle <<1,$$
(7)

где A_0 – начальное значение амплитуды при «входе» луча в неоднородную среду.

Допустимые дистанции L при расчетах искажений фазового фронта волны ограничены, но условия (6) и (7) при вычислении эйконала оказываются излишне жесткими. Воспользуемся другими условиями, которые вытекают из требования однозначности решения задачи:

a) через каждую точку пространства, в котором используются лучевые представления, должна проходить только одна лучевая траектория;

б) лучи, идущие от той части плоскости Q, где граничное поле $E_Q \neq 0$, до точки наблюдения, не должны пересекать каустики.

Первое условие позволяет связать эйконалы лучей с координатой точки пересечения этими лучами плоскости *Q* и учесть полный фазовый сдвиг в фазе эквивалентных источников в этой точке.

Второе условие дает возможность вычислять поле в точке наблюдения с помощью дифракционного интеграла без учета каустических фазовых сдвигов.

Чтобы определить количество лучей в разных точках пространства и оценить кратчайшее расстояние до каустики, представим профиль диэлектрической проницаемости воздуха $\varepsilon(h)$, заданный в интервале высот (0, *H*), в следующей форме:

$$\varepsilon(h) = \varepsilon_0 + g_c h + \widetilde{\varepsilon}(h), \qquad (8)$$

где ε_0 – среднее значение, g_c – средний градиент в интервале высот 0 < h < H, $\tilde{\varepsilon}(h)$ – выборка (реализация) случайного процесса, описывающая отклонения ε от линейной зависимости g_ch . Линейную составляющую g_ch можно учесть введением эквивалентного радиуса Земли, поскольку начальное направление лучей практически параллельно земной поверхности. Тогда структура и вид каустик зависят от случайной составляющей $\tilde{\varepsilon}(h)$. Если представить $\tilde{\varepsilon}(h)$ в виде ряда Фурье, то анализ поведения лучей сводится к известной задаче о каустиках позади плоского фазового экрана с синусоидальной модуляцией фазы [9].

Предположим, что искажения фазового фронта плоской волны вблизи плоскости *Q* после прохождения неоднородной среды описываются поправкой к эйконалу первого порядка (5).

Если случайную составляющую $\tilde{\epsilon}(h)$ можно аппроксимировать первой гармоникой ряда Фурье с достаточной точностью, то поправку к эйконалу первого порядка с учетом выражения (5) можно записать следующим образом:

$$\varphi_1(\eta) = b\sin(\omega\eta + \alpha) = a_1L\sin(\omega\eta + \alpha)$$

где ω = 2π/*H*, η – координата выхода луча из фазового экрана, *b* – амплитуда «модуляции» эйконала, *a*₁ – амплитуда первой гармоники, α – начальная фаза.

Уравнения каустик позади экрана имеют вид [9]:

$$\omega y = \omega \eta + ctg(\omega \eta) \left[1 - \omega^2 b^2 \cos^2(\omega \eta) \right], \tag{9}$$

$$\omega x = \frac{1}{\omega b \sin(\omega \eta)} \left[1 - \omega^2 b^2 \cos^2(\omega \eta) \right]^{3/2}.$$
 (10)

Анализ уравнений (9), (10) позволяет оценить минимальное расстояние до каустики R_m , а также соответствующие значения дистанций, пройденных волной до фазового экрана L и от экрана до заострения каустики x_{κ} :

$$R_m = L + x_\kappa, \qquad x_\kappa = L, \qquad L = \frac{H}{\pi \sqrt{2a_1}}.$$
 (11)

На рис.1, 2 приведены результаты расчета каустик по уравнениям (9) и (10) для первой гармоники разложения $\tilde{\epsilon}(h)$ реальных профилей $\epsilon(h)$, измеренных над морем (экспериментальные данные предоставлены Б.В. Жуковым). На рис.1, *а* показана случайная составляющая $\tilde{\epsilon}(h)$, на рис.1, δ – первая гармоника ряда Фурье, а на рис.1, ϵ – каустика, вычисленная для этой гармоники. Горизонтальная ось *x* соответствует границе геометрической тени. По вертикали на всех графиках отложена высота *y* относительно оси *x*. Начало координат (*x* = 0) находится на плоскости фазового экрана.

На рис.2, *а* – *в*, в таких же обозначениях приведены результаты аналогичных расчетов для другого профиля, отличающегося иными значениями амплитуды и начальной фазы пер-

вой гармоники. Римскими цифрами на рисунках указано число лучей, проходящих через заданную точку в разных областях плоскости *x*, *y*.

Если приемник не попадает в зону многолучевости, то задача расчета поля с помощью МЭИ без учета каустических фазовых сдвигов имеет единственное решение. В этом случае единственное решение имеет и обратная задача, т.е. синтез источников вторичного излучения по известному комплексному полю в окрестности точки наблюдения.

Для произвольного высотного профиля $\varepsilon(h)$ картина случайных каустик имеет более сложную пространственную структуру. Чтобы получить в явном виде уравнение кривой, описывающей форму фазового фронта на плоскости *y*, *x* после прохождения волной дистанции *L*, положим $L = L_0 + x$, причем $|x| \ll L_0$.

Эйконал

$$\varphi(L) = \varphi_0 + \varphi_1 = n_0(L_0 + x) + \tilde{n}(y)(L_0 + x), \qquad (12)$$

где $n_0 = \sqrt{\varepsilon_0}$ – средний коэффициент преломления воздуха, $\tilde{n}(y) = \frac{1}{2}\tilde{\varepsilon}(y)$ – случайная составляющая профиля n(y).

На фазовом фронте, по определению, $\varphi(L) = const$. Полагая в (12) $\varphi(L) = L_0 n_0$ и учитывая, что $n_0 \approx 1$, получим

$$x = -\widetilde{n}(y)L_0 - \widetilde{n}(y)x.$$
⁽¹³⁾

Поскольку $L_0 >> |x|$, с точностью до второго слагаемого в правой части (13), получаем уравнение фазового фронта в явном виде:

$$x = f(y) \approx -\tilde{n}(y)L_0 = -\frac{1}{2}\tilde{\epsilon}(y)L_0.$$
 (14)

Известно, что в двумерной задаче каустика совпадает с эволютой фазового фронта [9]. Уравнения эволюты для кривой x = f(y) в параметрической форме имеют вид [10]:

$$y_k = y - \frac{x'(1+x'^2)}{x''}, \qquad x_k = x + \frac{1+x'^2}{x''},$$
 (15)

где x_k , y_k – координаты точек эволюты на плоскости y, x; x' и x'' – производные первого и второго порядка функции x = f(y). Роль параметров выполняют x и y, т.е. координаты точек фазового фронта.

Если известно уравнение кривой (14), то легко построить лучи, совпадающие с нормалями к фазовому фронту. Уравнение нормали можно записать в виде [11]:

$$X - x = -\frac{1}{x'}(Y - y),$$
(16)

где x, y – координаты точки M на кривой x = f(y), X, Y – текущие координаты нормали в точке M(x, y).

Картина лучей (16) и каустик (15) для x > 0, т.е. «позади» плоскости Q, для двух реальных профилей $\varepsilon(y)$ (данные Б.В. Жукова), приведена на рис. 3, ε и 4, ε . На рис. 3, a, 4, a приведены высотные профили $\varepsilon(y)$, на рис. 3, δ , 4, δ – соответствующие этим профилям формы фазовых фронтов вблизи плоскости Q. Для упрощения достаточно сложной картины лучей профили $\varepsilon(h)$ аппроксимированы усеченным рядом Фурье с сохранением трех гармоник.

ISSN 0485-8972 Радиотехника. 2013. Вып. 173

Фазовый фронт волны рассчитан для трассы со следующими характеристиками: расстояние от передатчика до фазового экрана $R = 50 \kappa m$, дистанция $L = 20 \kappa m$.Сплошной жирной линией обозначена поверхность Земли с эквивалентным радиусом, соответствующим заданному профилю. Жирные точки – возможные положения приемников на высоте $h_2 = 25 m$ над поверхностью Земли.

На рис.3, *в* точка наблюдения на всем интервале дальностей находится в зоне однолучевого распространения. В этом случае расчет пространственного распределения множителя ослабления V(h, R) решается однозначно и для ее решения можно использовать упрощенный алгоритм МЭИ. Для профиля, приведенного рис. 4, *в*, на расстоянии $x = 50\kappa m$ от плоскости Q приемник оказывается в многолучевой зоне. В этом случае при вычислении множителя ослабления V необходимо для лучей, касающихся каустик, ввести дополнительный фазовый сдвиг – $\pi/2$ [8].

Выводы

Анализ структуры случайных каустик и зон многолучевости дает возможность определить типы высотных профилей, для которых задача оценки поля методом эквивалентных источников решается однозначно без учета каустических фазовых сдвигов.

Построение лучей и анализ структуры случайных каустик позволяет выявить интервалы углов, в пределах которых точность расчетов поля может быть снижена из-за присутствия каустик. Тогда для уточнения значений поля необходимо дополнить алгоритм построением дифракционных лучей и последующим учетом каустических сдвигов фаз в лучах, касающихся каустик.

Использованный метод расчета с учетом анализа лучей и каустик позволяет по измеренным значениям метеопараметров вблизи трассы распространения радиоволн получить расчетным путем каталог (базу данных) для оценки и классификации условий распространения в рамках нескольких типов.

Построение лучей и каустик в той части трассы, где может находиться приемник, позволяет просто интерпретировать ход дистанционных и высотных зависимостей множителя ослабления как в области прямой видимости, так и в области тени, поскольку наглядно иллюстрирует области роста амплитуды вблизи каустических зон и уменьшение амплитуды в области «каустической тени».

Список литературы. 1. Фейнберг Е.Л. Распространение радиоволн вдоль земной поверхности. – М. : АН СССР, 1961. – 546 с. 2. Фок В.А. Проблемы дифракции и распространения электромагнитных волн. - М. : Сов. радио, 1970. - 517с. 3. К. Furutsu. Field strength in the vicinity of the line of sight in diffraction by a spherical mountain // J. Radio.Res. Lab. (Japan). – 1956. – 3, №11. – Р.55-76. 4. Жуков Б.В., Клюева А.Н., Петров В.А. Оценка дистанционных зависимостей УВЧ радиополя над морем для произвольных высотных профилей коэффициента преломления воздуха // Радиотехника. - 2011. -Вып. 164. – С. 58-65. 5. Петров В.А., Клюева А.Н., Павлова О.Л. Оценка текущих условий загоризонтного распространения УКВ по заданному пространственному распределению коэффициента преломления воздуха // Радиотехника. – 2011. – Вып. 166. – С. 214 – 222. 6. Акулиничев Ю.П., Ваулин И.Н., Ровкин М.Е. Оценка эффективности прогнозирования зон радиовидимости по имеющимся экспериментальным данным // Изв. вузов. Физика. – 2007. – Т. 50, N5. – С. 87 – 92. 7. Кравцов Ю.А. Сильные флуктуации амплитуды световой волны и вероятность образования случайных каустик // Журнал экспериментальной и теоретической физики. – 1968. – Т.55, Вып. 3(9). – С.798-801. 8. Боровиков В.А., Кинбер Б.Е. Геометрическая теория дифракции. - М. : Связь, 1978. - 248с. 9. Кравцов Ю.А., Орлов Ю.И. Геометрическая оптика неоднородных сред. – М. : Наука, 1980. – 304с. 10. Смирнов В.И. Курс высшей математики. – М. : Гостехиздат. – Изд.14, т.2. – С. 351-368. 11. Смирнов В.И. Курс высшей математики. – М.: Гостехиздат. – Изд. 14, т. 1. – С. 179.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 07.05.2013