ЗАЩИТА ИНФОРМАЦИИ В РАДИОТЕХНИЧЕСКИХ И ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМАХ

УДК 681.3.06

Г. З. ХАЛИМОВ, д-р техн. наук

ВЫСОКОСКОРОСТНОЕ УНИВЕРСАЛЬНОЕ ХЕШИРОВАНИЕ ПО АЛГЕБРАИЧЕСКИМ КРИВЫМ

Решение задачи построения высокоскоростного хеширования определяется схемами хеш вычислений в конечных полях. Примером являются модификации алгоритма UMAC (2000 – 2005 гг.). Разрешение противоречия между требованиями стойкости к атакам на хеш функцию, сложности, скорости вычисления, характеристикам и реализациям алгоритма определяется в теории универсального хеширования по алгебраическим кривым. Наилучшие результаты универсального хеширования обеспечиваются вычислениями в простом и квадратичном конечном поле по кривым большого рода [1, 2]. Применение алгебраических кривых большого рода приводит к увеличению размерности функционального поля ассоциированного с кривой и росту сложности вычислений.

Цель статьи – оценка сложности универсального хеширования по наилучшим алгебраическим кривым с большим числом точек. В разд. 1 представлено определение и наилучшие результаты универсального хеширования по алгебраическим кривым. В разд. 2 приводятся оценки сложности вычисления хеш кодов по максимальным кривым в квадратичном поле.

1. Определение и наилучшие результаты универсального хеширования по алгебраическим кривым

Определение 1 [3]. Пусть задана абсолютно неразложимая, несингулярная проективная кривая χ над полем F_q с точками $P = \{P_1, P_2, ..., P_n\} \in \chi(F_q)$. Для каждой алгебраической кривой можно определить поле рациональных функций $F_q(\chi)$. В каждой точке P_j кривой χ можно вычислить оценку ϑ_P для рациональных функций $f_i \in F_q(\chi)$, которая определяет порядок нуля или полюса функции f_i в этой точке. Хеш значение $h_{P_j}(m) \in F_q$ для сообщения $m = (m_1, ..., m_k), m_i \in F_q$ в точке $P_j \in F_q$ определяется выражением

$$h_{P_j}(m) = \sum_{i=1}^k f_i(P_j)m_i , \qquad (1)$$

где $f_i \in F_q(\chi)$ с упорядоченными порядками полюсов $0 < \rho_1 < ... < \rho_k$. Хеш функция $h_{P_j}(m)$ определяет универсальный хеш класс $\varepsilon - U(N, q^k, q)$, где вероятность коллизии $\varepsilon \leq \rho_k / N$, N – число точек алгебраической кривой.

Замечание 1.

1. Выражение (1) определяет хеш вычисление на основе скалярного произведения по рациональным функциям алгебраических кривых. Метод универсального хеширования определяется последовательностью следующих действий:

- определить проективное многообразие – алгебраическую кривую и её точки;

- построить линейное векторное пространство для функционального поля алгебраической кривой;

- задать хеш функцию как скалярное произведение слов данных и значений рациональных функций в точке кривой.

2. Параметры универсального хеш класса $\varepsilon - U(N, q^k, q)$ на основе хеширования по рациональным функциям определяются свойствами алгебраической кривой. Подгруппа Вейерштрасса $H(P_{\infty}) = \{\rho_0 = 0 < \rho_1 < ...\}$ определяется полюсами рациональных функций в особой точке кривой и рациональные функции упорядоченные по значениям полюсов образуют векторное линейное пространство размерности $\dim(L(G) = v_{\ell} := \{(i, j) \in N^2 : \rho_i + \rho_j = \rho_{\ell+1}\}.$

3. Ключевой параметр хеш функции $h_{P_j}(m)$ определяется вычислением в точке алгебраической кривой.

Определение 2 [4]. Асимптотическая граница вероятности коллизии для $\varepsilon - U(N, q^k, q)$ хеш класса, построенного по рациональным функциям алгебраических кривых над большим алфавитом и фиксированных k и q, имеет вид

$$1 - \frac{q^k (q-1)}{(q^k - 1)q} \le P_{KO,R} \le \varepsilon \le \frac{\sqrt{2k}}{q} + \frac{3\sqrt{2k}}{2q\sqrt{q}}$$
(2)

Замечание 2.

1. Нижняя оценка ε определяется известной верхней границей Плоткина для кодового расстояния алгебраических кодов. Верхняя граница (2) следует из соотношения $\varepsilon \leq \rho_k / N$ для максимальных плоских кривых.

2. Универсальное хеширование по рациональным функциям максимальных плоских алгебраических кривых имеет лучшие асимптотические результаты. Верхняя граница вероятности коллизии для универсального хеширования $h_{P_j}(m)$ определена в области малых значений $k \leq 2g$, *g*-род кривой, является прямо пропорциональной корню квадратному из *k*.

Определение 3. Пусть $N_q(g)$ обозначает максимальное число F_q рациональных точек, которое кривая рода g может иметь. Кривая C рода g является максимальной над F_q , если число её F_q рациональных точек $\#C(F_q)$ равно $N_q(g)$.

Теорема 1 [5]. Пусть C – проективная и несингулярная, абсолютно неразложимая кривая, определенная над конечным полем F_q с q элементами. Тогда число F_q рациональных точек кривой определяется неравенством

$$N_q(g) \le 1 + q + 2\sqrt{q}g(C)$$

Замечание 3.

1. Теорема 1 (известная как теорема Хассе – Вейля) определяет, что для максимальных кривых над конечным полем достигается максимальное отношение числа точек кривой к роду.

2. Наилучший результат универсального хеширования, как следует из оценки вероятности коллизии $\varepsilon \leq \rho_k / N$, достигается на максимальных кривых.

Теорема 2 [6]. Пусть С кривая над F_q рода g и удовлетворяются следующие условия

1.
$$g > (\sqrt{q} - 1)^2 / 4$$
;
2. # $C(F_q) = q + 2g\sqrt{q} + 1$, (то есть *C* является максимальной над F_q).

Тогда X является F_q изоморфной кривой Эрмита над F_q и её род $g = \sqrt{q}(\sqrt{q}-1)/2$.

Теорема 3 [7]. Для положительного целого *s* заданы $q = 2q_0^2$ и $q_0 = 2^s$. Пусть *X* кривая над F_q рода *g* и удовлетворяются следующие условия:

1. $g = q_0(q-1);$

2.
$$\#X(F_q) = q^2 + 1$$
.

Тогда X является F_q изоморфной кривой Дэлигнэ – Лустига ассоциированной с группой Судзуки $S_z(q)$. Замечание 4. Теоремы 2 и 3 формулируют главный результат для максимальных кривых.

Известные результаты по алгебраическим кривым над полем F_q , $q = l^2$.

1. Кривая Эрмита $y^{l} + y = x^{l+1}$ является наилучшей максимальной плоской кривой наибольшего первого рода g = l(l-1)/2 и функциональное поле определяется функциями вида $\{x^{i} \cdot y^{j}\}$.

2. Алгебраические кривые:
-
$$y^{l} + y = x^{(l+1)/2}$$
;
- $\sum_{i=1}^{t} y^{l/2^{i}} = x^{l+1}$, $l = 2^{t}$;
- $y^{l} + y = x^{(l+1)/3}$, $l \equiv 2 \pmod{3}$;
- $\sum_{i=0}^{t-1} y^{3^{i}} = \omega x^{l+1}$, $l = 3^{t}$, $\omega \in F_{l^{2}} \omega^{l-1} = -1$

являются максимальными кривыми второго и третьего рода, имеют подгруппу Вейерштрасса $H(P_{\infty}) = \langle \rho_1, \rho_2 \rangle$ размерности dim = 2 и функциональное поле $\{x^i \cdot y^j\}$.

3. Максимальные кривые вида:

$$-x^{(l+1)/3} + x^{2(l+1)/3} + y^{l+1} = 0, \ l \equiv 2 \pmod{3};$$

$$-\omega x^{(l-1)/3} - y x^{2(l-1)/3} + y^{l} = 0, \ l \equiv 1 \pmod{3}, \ \omega \in F_{l^2}, \ \omega^{l-1} = -1;$$

$$-y^{l} + y = \left(\sum_{i}^{t} x^{l/3^{i}}\right)^{2}, \ l = 3^{t}$$

имеют подгруппу Вейерштрасса $H(P_{\infty})$ размерности dim = 3 и функциональное поле определяется рациональными функциями вида $\left\{x^{i} \cdot y^{j} \cdot v^{t}\right\}$.

4. Кривая Дэлигнэ – Лустига, ассоциированная с группой Судзуки, определяется полной линейной серией $D = |(q + 2q_0 + 1)P_0|$ размерности dim = 4 и степени $q + 2q_0 + 1$ [8].

Кривая Судзуки $y^q - y = x^{q_0}(x^q - x)$ определена над полем F_q , $q = 2q_0^2$, $q_0 = 2^s$ рода $g = q_0(q-1)$ и имеет число точек $N = q^2 + 1$. Базис пространства $L(\rho_\ell P_0)$ задается функциями вида $\{w^j \cdot v^i \cdot y^t \cdot x^r : i(q+2q_0) + j(q+2q_0+1) + t(q+q_0) + r \cdot q \le \rho_\ell\}$.

5. Кривая Ферма $x^{(q-1)/3} + y^{(q-1)/3} + z^{(q-1)/3} = 0$ над F_q , $q \equiv 1 \pmod{3}$ является кривой с большим числом точек $N = 2(q-1)^2/9$.

Замечание 5.

1. Кривая Эрмита имеет наилучшее отношение числа точек к роду кривой $N_{q}(g)/g$.

- 2. Максимальные кривые второго и третьего рода покрываются кривой Эрмита.
- 3. Абсолютно наилучший результат $N_{a}(g)/g$ достигается на кривой Судзуки.

2. Оценки сложности универсального хеширования по алгебраическим кривым Замечание 6.

1. Сложность универсального хеширования по алгебраическим кривым определяется размерностью функционального поля ассоциированного с кривой.

2. Вычисление хеш значений $h_{P_i}(m)$ по выражению (1) определяется многопараметри-

ческим скалярным произведением рациональных функций алгебраических кривых со словами сообщения. В конструкции с прямым вычислением $h_{P_j}(m)$ требуется m (m – размер-

ность поля рациональных функций) умножений в конечном поле для одного значения суммы (1) с предварительным вычислением значения рациональной функции в точке кривой.

3. Хеширование по алгебраическим кривым с использованием метод вычисления хеш функций на основе многопараметрической схемы Горнера реализует наименьшую сложность вычислений [9].

Метод вычисления хеш функций на основе многопараметрической схемы Горнера основывается на определении хеш функции по алгебраической кривой, её функционального поля, соотношения между размерностью линейного пространства рациональных функций кривых и размером хешируемых данных и имеет следующую последовательность действий:

- задать хеш функцию через скалярное произведение рациональных функций функционального поля алгебраической кривой;

- определить массив рациональных функций с учетом возрастания полюсов рациональных функций и размерности функционального пространства;

- построить алгоритм вычисления хеш функций на основе многопараметрической схемы Горнера соответственно размерности функционального поля кривой.

Алгоритмы вычислений хеш функций по максимальным кривым Эрмита, Судзуки и кривым с большим числом точек Ферма и оценки сложности хеширования представлены в табл.1.

Таблица 1.

Уравнение кривой	Определение $h_{x,y}(m)$	Оценки сложности хеш вычислений
Проективная прямая $X + Y + Z = 0, F_q$	$\sum_{i=0}^{k-1} m_i \cdot x^i$	k
Кривая Эрмита $y^{q} + y = x^{q+1}, F_{q^{2}}$	$\sum_{j=0}^{s} y^{j} \cdot \sum_{i=0}^{s-j} m_{i,j} \cdot x^{i}$	<i>k</i> + <i>s</i>
Максимальные кривые $y^{q} + y = x^{d}$, $F_{q^{2}}$, d q+1	$\sum_{i=0}^{s_1-1} x^i \cdot \sum_{j=0}^{m(s_1-1-i)+t+ind} m_{i,j} \cdot y^j,$ $t = \lfloor (k - m(s_1 - 1)s_1 / 2) / s_1 \rfloor, m = (q+1) / d,$ ind = 0, -1	$k + s_1$
Кривая Судзуки $y^{q} - y = x^{q_{0}} (x^{q} - x),$ $F_{q}, q = 2q_{0}^{2}, q_{0} = 2^{s},$	$\sum_{t=0}^{1} y^{t} \sum_{i=0}^{s-t} v^{s} \sum_{r=0}^{\min\{s-t,q_{0}-t\}} (x/v)^{r} \sum_{j=0}^{\min\{s-r,q_{0}-1\}} m_{t,i,r,j} (w/v)^{j},$ $s = (3k)^{1/3}$	$\frac{k+s^3/3+s^2/2-1}{s^2/2-1}$
Кривая Ферма $X^{(q-1)/3} + Y^{(q-1)/3} + Z^{(q-1)/3} = 0$ $F_q, q \equiv 1 \pmod{3}$	$\sum_{j=0}^{s} y^j \cdot \sum_{i=0}^{s-j} m_{i,j} \cdot x^i$	<i>k</i> + <i>s</i>
$s = \left (2k + 1/4)^{1/2} - 1/2 \right , s_1 =$	$(2k/m+1/4)^{1/2} - 1/2$, $\left\lceil \cdot \right\rceil$ – округление к больш	ему целому числу,

• – округление к меньшему целому числу.

Оценки сложности вычислений по числу операций универсального хеширования по рациональным функциям алгебраических кривых для фиксированного поля вычислений представлены в табл. 2.

Таблица 2

Vnanyauva vnupař	Оценки числа операций $N_{onep}(k)$ над F_q для k слов данных				
у равнение кривои	$k = \sqrt{q}$	k = q	$k = q^{3/2}$		
Проективная прямая	$q^{1/2}$	-	-		
Кривая Эрмита	$q^{1/2} + \sqrt{2}q^{1/4}$	$q + \sqrt{2}q^{1/2}$	-		
Максимальные кривые второго рода $y^{\sqrt{q}} + y = x^{(\sqrt{q}+1)/2}$	$q^{1/2} + q^{1/4}$	$q + q^{1/2}$	-		
Максимальные кривые третьего рода $y^{\sqrt{q}} + y = x^{(\sqrt{q}+1)/3}$	$q^{1/2} + \sqrt{2/3}q^{1/4}$	$q + \sqrt{2/3}q^{1/2}$	-		
Кривые Ферма с большим числом точек $X^{(q-1)/3} + Y^{(q-1)/3} + Z^{(q-1)/3} = 0$	$q^{1/2} + \sqrt{2}q^{1/4}$	$q + \sqrt{2}q^{1/2}$	$q^{3/2} + \sqrt{2}q^{3/4}$		
Кривая Сузуки	$2q^{1/2} + 1.04q^{1/3} +$	$2q + 1.04q^{2/3} +$	$2q^{3/2} + 1.04q +$		
$y^q - y = x^{q_0} \left(x^q - x \right)$	$2\sqrt[3]{3q^{1/6}}$	$2\sqrt[3]{3}q^{1/3}$	$2\sqrt[3]{3}q^{1/2}$		

Замечание 7.

1. Результаты табл. 2 следуют из оценок универсального хеширования для алгоритмов быстрых вычислений Горнера по рациональным функциям алгебраических кривых.

2. Увеличение числа операций вычислений в конечном поле при универсальном хешировании по максимальным кривым по сравнению с хешированием по проективной прямой имеет зависимость, которая определяется корнем квадратным от числа слов данных. С уменьшением рода максимальной кривой уменьшаются затраты на вычисления. Хеширование по кривой Ферма $X^{(q-1)/3} + Y^{(q-1)/3} + Z^{(q-1)/3} = 0$ с большим числом точек имеет одинаковую сложность с хешированием по кривой Эрмита.

3. Наибольшие затраты на вычисления имеет хеширование по кривой Сузуки. Число вычислений в конечном поле в два раз больше по сравнению с хешированием по проективной прямой.

Значения числа вычислений универсального хеширования представлены в табл. 3.

Таблица 3

	1								
	Число операций вычисления универсального хеширования для L бит данных (относительное число операций)								
Уравнение кривой	Размер поля F_q , $\log q = 32$			Размер поля F_q ,		Размер поля F_q ,			
				$\log q = 64$		$\log q = 128$			
	1Кбт	1Мбт	1Гбт	1Кбт	1Мбт	1Гбт	1Кбт	1 <i>Мбт</i>	1Гбт
Проективная прямая	2 ⁸	2 ¹⁸	2 ²⁸	27	2 ¹⁷	2 ²⁷	2 ⁶	2 ¹⁶	2 ²⁶
Кривая Эрмита	$2^{8}+2^{4,5}$	$2^{18}+2^{9,5}$	$2^{28}+2^{14,5}$	$2^7 + 2^4$	$2^{17}+2^{9}$	$2^{27}+2^{14}$	$2^{6}+2^{3,5}$	$2^{16}+2^{8,5}$	$2^{26}+2^{13,5}$
	(1,09)	(1,003)	$(1,0^48)$	(1,12)	(1,004)	$(1,0^{3}1)$	(1,17)	(1,006)	$(1,0^{3}2)$
Кривые	$2^{8}+2^{4}$	$2^{18}+2^{9}$	$2^{28}+2^{14}$	$2^7 + 2^{3,5}$	$2^{17}+2^{8,5}$	$2^{27}+2^{13,5}$	$2^{6}+2^{3}$	$2^{16}+2^{8}$	$2^{26}+2^{13}$
второго рода	(1,06)	(1,002)	$(1,0^46)$	(1,09)	$(1,0^227)$	$(1,0^48)$	(1,125)	(1,004)	$(1,0^{3}1)$
Кривые	$2^{8}+2^{3,7}$	$2^{18}+2^{8,7}$	$2^{28}+2^{13,7}$	$2^7 + 2^{3,2}$	$2^{17}+2^{8,2}$	$2^{27}+2^{13,2}$	$2^{6}+2^{2,7}$	$2^{16}+2^{7,7}$	$2^{26}+2^{12,7}$
третьего рода	(1,05)	(1,002)	$(1,0^46)$	(1,07)	$(1,0^{2}22)$	$(1,0^47)$	(1,1)	(1,003)	$(1,0^{3}1)$
Кривые Ферма	$2^{8}+2^{4,5}$	$2^{18}+2^{9,5}$	$2^{28}+2^{14,5}$	$2^7 + 2^4$	$2^{17}+2^{9}$	$2^{27}+2^{14}$	$2^{6}+2^{3,5}$	$2^{16}+2^{8,5}$	$2^{26}+2^{13,5}$
	(1,09)	(1,003)	$(1,0^48)$	(1,12)	(1,004)	$(1,0^{3}1)$	(1,17)	(1,006)	$(1,0^{3}2)$
Кривая Сузуки	$2^{9}+2^{5,4}+$	$2^{19} + 2^{12,05} +$	$2^{29}+2^{18,7}$	$2^{8}+2^{4,7}$	$2^{18} + 2^{11,3}$	$2^{28}+2^{18,0}$	$2^{7}+2^{4,05}$	$2^{17}+2^{10,7}$	$2^{27}+2^{17,3}$
	24,19	2 ^{7,5}	+	$^{2}+2^{3,86}$	$9^{+2^{7,19}}$	$5^{+2^{10,53}}$	$+2^{3,53}$	$^{2}+2^{6,86}$	$9^{+2^{10,19}}$
	(2,23)	(2,017)	(2,002)	(2,32)	(2,02)	(2,002)	(2,44)	(2,027)	(2,0025)

В скобках представлен проигрыш по числу вычислений по сравнению с проективной прямой.

Выводы

1. Оценки числа операций хеш вычислений по плоским алгебраическим кривым являются близкими, и сложность вычислений имеет тенденцию к уменьшению с ростом размерности поля вычислений при фиксированном размере данных.

2. Хеш вычисления по плоским алгебраическим кривым несколько сложнее по сравнению с вычислениями по проективной прямой. Относительное увеличение числа операций составляет порядка 5 – 17% на блоках данных малой длины $\approx 1 K \delta m$ и $\ll 1 \%$ для данных $\geq 1 M \delta m$.

3. Хеш вычисления по кривой Сузуки сложнее приблизительно в два раза, по сравнению с хешированием по плоским кривым и проективной прямой.

Список литературы: 1. Халимов Г.З. Универсальное хеширование по алгебраическим кривым в простом поле / Г.З.Халимов // Системи управління, навігації та зв'язку / Міністерство промислової політики України, ДП «Центральний науково-дослідний інститут навігації і управління». - Київ, 2011. -Вип. 1(17). – С.156-161. 2. Халимов Г.З. Универсальное хеширование по рациональным функциям кривой Эрмита / Г.З.Халимов, А.Ю.Иохов // Междунар. науч.-практ. конф. «Застосування інформаційніх технологій у підготовці та діяльності сил охорони правопорядку» ; Академія внутрішніх війск МВС України 17.03.2011. Зб. тези доповідей. – 2011. – С.48-51. З. Халимов Г.З. Универсальное хеширование по максимальным кривым Гурвица / Халимов Г.З. // Прикладная радиоэлектроника. – Харьков : ХНУРЭ, 2010. – Т.9. № 3, – С.365-370. 4. Халимов Г.3. Коллизионные оценки универсального хеширования на основе схем с алгебраическими кодами / Г.З.Халимов // Прикладная радиоэлектроника. - Харьков : ХНУРЭ, 2009. – Т. 8, Вып. 3. – С.338-342. 5. Weil A. Courbes algebriques et variétés abeliennes / A.Weil // Hermann, Paris, 1971. - P.301. 6. Ruck H.G. A characterization of Hermitian function fields over finite fields / H.G.Ruck, H.Stichtenoth // J. reine angew. Mathematics. - 1994. - V.457. - P.185-188. 7. Torres f. The Deligne-Lusztig curve associated to the Suzuki group [Электронный ресурс] / F.Torres // ar-Xiv:alg-geom/9706012v1 26Jun 1997. 8. Ihara Y. Some remarks on the number of rational points of algebraic curves over finite fields / Y.Ihara // J. Fac. Science. Tokio. - 1981. - N.28. - P. 721-724. 9. Халимов Г.З. Аутентификация с применением эрмитовых кодов / Г.З.Халимов, А.Ю.Иохов // Вестник ХПИ. – Х. : НТУ "ХПИ", 2005. – Вып. 9. – С. 26-32.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 01.02.2013