А.П. ЕФИМОВИЧ, В.Г. КРЫЖАНОВСКИЙ, д-р техн. наук ИССЛЕДОВАНИЕ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК НАСЫЩЕННОГО УСИЛИТЕЛЯ КЛАССА F

Введение

Усилители мощности (УМ) класса F благодаря своим высоким энергетическим характеристикам и возможности реализации в диапазонах высоких и сверхвысоких частот (ВЧ и СВЧ) все чаще используются разработчиками радиоэлектронных систем [1 – 3]. Большое внимание уделяется проектированию данного УМ с учетом реальных свойств транзистора и нагрузочных цепей [4 – 8]. Но теория УМ класса F содержит ряд вопросов, требующих внимания разработчиков. В первую очередь это вопросы получения высокого стокового по коэффициента полезного действия (КПД) при угле отсечки (θ_C) 90, что соответствует смещению УМ класса В. В [9] было показано, что для получения в УМ класса F формы напряжения сток-исток V_{DS}, которая образована первой и третьей гармоникой напряжения, необходимо обеспечить смещение УМ класса AB ($\theta_C > 90^{\circ}$). Поскольку только при таком смещении в токе стока I_D, имеющем вид усеченной косинусоиды, содержится третья гармоника тока, противофазная первой гармонике тока. В [10] показано, что в УМ класса F при введении транзистора в насыщение возникают искажения формы ID, благодаря чему можно получить третью гармонику тока в требуемой фазе при углах отсечки, соответствующих УМ класса AB, УМ класса B и даже УМ класса C ($\theta_C < 90^\circ$). Но остаются невыясненными вопросы влияния уровня входного сигнала, импеданса на третьей гармонике и выходной емкости транзистора C_{out} на η_D и выходную мощность P_{OUT} УМ класса F в режиме большого входного сигнала.

Цель работы – изучение взаимного влияния уровня входного сигнала, импеданса на третьей гармонике и выходной емкости транзистора на стоковый КПД и выходную мощность насыщенного УМ класса F.

Численное моделирование и расчет усилителя

Рассмотрим простейший УМ класса F с добавлением третьей гармоники напряжения [11], в котором активный элемент (транзистор) входит в состояние насыщения. Поясним на примере рис. 1, *a*, *б* как происходит насыщение в УМ класса F.

Рис. 1

На рис. 1, a пунктиром показаны формы I_D , V_{DS} и нагрузочная кривая bc, которые соответствуют ненасыщенному УМ класса В. В ненасыщенном УМ форма ID имеет вид усеченной косинусоиды. Данный режим сохраняется до тех пор, пока напряжение на затворе транзистора (V_{GS}) не превысит напряжение V_{GSmax} , при котором транзистор насыщается. В случае, когда $V_{GS} > V_{GSmax}$, напряжение V_{DS} становится меньше напряжения перегиба (V_K), что приводит к снижению I_D относительно максимального тока стока (I_{Dmax}) (участок *ab* на рис. 1, *a*). В результате форма І_D искажается (появляется провал). В [10] было показано, что такая форма I_D может быть использована для создания формы V_{DS} в УМ класса F, поскольку она содержит противофазные первую и третью гармоники тока. Если обеспечить на кристалле транзистора активный импеданс на первой гармонике $Z(f_0) = R$, равный нулю на второй гармонике $Z(2f_0) = 0$ и близкий к бесконечности на третьей гармонике $Z(3f_0) \rightarrow \infty$, можно из насыщенного УМ класса В получить насыщенный УМ класса F с добавлением третьей гармоники напряжения (рис. 1, б). В насыщенном УМ класса F как и в УМ класса В при $V_{GS} > V_{GSmax}$ форма I_D зависит только от V_{DS} (участок **abc** на рис. 1, б). Из-за формы V_{DS} , характерной для УМ класса F, при $V_{DS} < V_K$ в токе I_D появляются два провала и один максимум при $V_{DS} > V_K$ (рис. 1, б). Взаимосвязь между I_D и V_{DS} в насыщенном УМ класса F отображает нагрузочная кривая *abcd* (рис. 1, δ). Также на рис. 1, δ показаны пунктиром нагрузочная кривая *ef* и формы I_D и V_{DS} , которые соответствуют обычному классу F. Исходя из рис. 1, б насыщенный УМ класса F по сравнению с ненасыщенным УМ класса F имеет следующие отличия:

1. У насыщенного УМ класса F минимум V_{DS} всегда ниже V_K ;

ſ

2. Форма I_D насыщенного УМ класса F зависит от V_{DS} и имеет два провала при $V_{DS} < V_K$ и один максимум при $V_{DS} > V_K$.

Выполним расчет ненасыщенного УМ класса F с добавлением третьей гармоники напряжения, используя полевой транзистор (ПТ) 2N7000L [12]. Статические характеристики данного транзистора могут быть описаны с помощью уравнений «Shichman-Hodges» (1) [13]

$$I_{D}(V_{GS}, V_{DS}) = \begin{cases} 0, V_{GS} < V_{T} \\ K_{P} \frac{W}{L} \left(V_{GS} - V_{T} - \frac{V_{DS}}{2} \right) V_{DS} \left(1 + \lambda V_{DS} \right), 0 < V_{DS} < V_{GS} - V_{T} \end{cases}$$
(1)
$$\frac{1}{2} K_{P} \frac{W}{L} \left(V_{GS} - V_{T} \right)^{2} \left(1 + \lambda V_{DS} \right), 0 < V_{GS} - V_{T} < V_{DS} \end{cases}$$

где V_T – пороговое напряжение, K_P – параметр крутизны проходной характеристики транзистора, W – ширина канала, L – длина канала, λ – коэффициент модуляции длины канала. На рис. 2 показаны статические характеристики 2N7000L, полученные подстановкой в (1) параметров данного транзистора: V_T = 1,86 B, K_P = 0,2 A/B^2 , W/L = 1, λ = 0 B^{-1} .

Зададим напряжение питания $V_{DD} = 25 \ B$ и максимальный ток стока $I_{Dmax} = 0,3 \ A$. Напряжение перегиба (рис. 2) при этом $V_K = 1,7 \ B \ (V_{GSmax} = 3,58 \ B)$. При $\theta_C = 90^{\circ}$ нагрузочный импеданс на первой гармонике вычисляется по формуле (2) [10]

$$Z(f_0) = R = \frac{V_{1m}}{I_{1m}} = \frac{2(V_{DD} - V_K)/\sqrt{3}}{I_{D\max}/2} = \frac{4(25 - 1,7)}{0,3\sqrt{3}} = 179,4 OM,$$
(2)

где R – активное нагрузочное сопротивление, I_{1m} и V_{1m} амплитуды гармоник тока и напряжения сигнала основной частоты f_0 . Выходная мощность и мощность потерь (P_{DISS}) вычисляются с помощью формул (3) и (4) [14]

$$P_{OUT} = \frac{V_{1m}I_{1m}}{2} = \frac{(V_{DD} - V_K)I_{D\max}}{2\sqrt{3}} = \frac{(25 - 1,7)0,3}{2\sqrt{3}} = 2,018 \ Bm,$$
(3)

$$P_{DISS} = P_{DC} - P_{OUT} = \frac{I_{D \max} V_{DD}}{\pi} - \frac{(V_{DD} - V_K)I_{D \max}}{2\sqrt{3}} = 0,369 \ Bm, \qquad (4)$$

ISSN 0485-8972 Радиотехника. 2014. Вып. 178

где *P*_{DC} – мощность, потребляемая усилителем. Теоретический стоковый КПД УМ класса F вычисляется с помощью (5) [14].

$$\eta_D = \frac{P_{OUT}}{P_{OUT} + P_{DISS}} 100 \ \% = 84,54 \ \%. \tag{5}$$

При анализе работы усилителя будем использовать упрощенную модель транзистора (рис. 3), которая состоит из источника тока, управляемого входным напряжением V_{GS} и выходной емкости C_{out} . Ток стока I_D описан с помощью уравнений (1).

Будем считать, что:

- на вход УМ поступает гармонический сигнал

$$V_{GS}(t) = V_{GG} + V'_{GSm} \cos(2\pi f_0 t) = V_{GG} + V'_{GSm} \cos(\omega_0 t),$$
(6)

где V_{GG} – напряжение смещения на затворе транзистора, V'_{GSm} – амплитуда напряжения на затворе;

– угол отсечки (θ_C) установлен равным 90° ($V_{GG} = V_T$);

– в УМ класса F (рис.3) импедансы на кристалле транзистора (со стороны C_{out}) на первой и третьей гармониках $Z(f_0)$ и $Z(3f_0)$ предполагаются чисто активными, импеданс на второй гармонике $Z(2f_0) = 0$;

– на всех высших гармониках (при n > 3) C_{out} создает на кристалле транзистора импедансы $Z_{Cout}(nf_0)$:

$$Z_{Cout}(nf_0) = -jX_{Cout}/n = -j/2\pi n f_0 C_{out}.$$
(7)

Для УМ класса F формы тока стока $I_D(t)$ и напряжения сток-исток $V_{DS}(t)$ могут быть выражены в терминах рядов Фурье (разложение по косинусам) [15]:

$$I_D(t) = I_{DC} + \sum_{n=1}^{\infty} I_{nm} \cos(n\omega_0 t + \xi_n), \quad V_{DS}(t) = V_{DD} + \sum_{n=1}^{\infty} V_{nm} \cos(n\omega_0 t + \psi_n), \tag{8}$$

где I_{DC} – потребляемый постоянный ток, V_{DD} – напряжение источника питания, I_{nm} и V_{nm} – амплитуды тока и напряжения *n*-й гармоники, *n* – номер гармоники, ξ_n и ψ_n – начальные фазы *n*-й гармоники тока и напряжения. Импеданс $Z(3f_0)$ предполагается чисто активным и P_{DISS} рассчитывается по [9]:

$$P_{DISS} = \frac{1}{T} \int_{0}^{T} I_D(t) V_{DS}(t) dt + V_{3m}^2 / 2Z(3f_0),$$
(9)

где T – период колебаний сигнала основной частоты f_0 .

Исследуем энергетические характеристики УМ класса F в зависимости от V'_{GSm} , $Z(3f_0)$ и импеданса, создаваемого C_{out} . Амплитудное напряжение на затворе, при котором происходит насыщение, $V_{GSm} = V_{GSmax} - V_T = 3,58 \text{ B} - 1,86 B = 1,72 B$; f_0 примем равным 13,56 $M\Gamma \mu$. Чис-

ленный расчет усилителя (рис. 3) выполним методом гармонического баланса, в котором используется 20 гармоник.

Рассмотрим 3 случая:

- 1. $|Z_{Cout}(f_0)| << R, (|Z_{Cout}(f_0)| = R/10);$
- 2. $|Z_{Cout}(f_0)| = R;$
- 3. $|Z_{Cout}(f_0)| >> R, (|Z_{Cout}(f_0)| = 10R).$

Для всех трех случаев получены зависимости $\eta_D(V'_{GSm}, Z(3f_0))$ (рис. 4), темно-серым цветом выделены области, где η_D слабо изменяется в зависимости от $Z(3f_0)$. Границы области соответствуют η_D на 1 % ниже η_D , полученного при $Z(3f_0) = 10Z(f_0)$. В теории идеального УМ класса F говорится о том, что $Z(3f_0)$ должен быть равен бесконечности [11], но из рис. 4 следует, что во всех трех случаях насыщение η_D происходит при значениях $Z(3f_0)$, которые лишь в несколько раз превышают $Z(f_0)$ и последующее увеличение $Z(3f_0)$ не приводит к существенному росту η_D . Для УМ класса F это предельно значимая особенность, которая связана с его физической реализуемостью. Это важно для усилителей класса F в диапазоне сверхвысоких частот (СВЧ), где вследствие влияния потерь в нагрузочных цепях достаточно сложно создать импеданс на третьей гармонике, который был бы приближен к бесконечности [5].

Зависимости $P_{DISS}(V'_{GSm}, Z(3f_0))$, показанные на рис. 5, объясняют поведение η_D (рис. 4). Из (5) следует, что чем ниже значение P_{DISS} , тем выше η_D . Поэтому минимальные значения P_{DISS} на рис. 5 (темно-серые области) соответствуют максимальным значениям η_D на рис. 4. В формуле (9) при стремлении к бесконечности $Z(3f_0) P_{DISS}$ будет зависеть только от мощности, которая рассеивается при перекрытии форм I_D и V_{DS} . На рис. 5 видно, что в темно-серых областях P_{DISS} очень слабо зависит от $Z(3f_0)$. Это говорит о том, что в данных областях мощность, рассеиваемая на $3f_0$, незначительна.

Рис. 5

Из рис. 4 следует, что получение высокого η_D (в темно-серых областях) достигается при компромиссе между V'_{GSm} и $Z(3f_0)$. Снижая V'_{GSm} и повышая при этом $Z(3f_0)$ (или наоборот),

остаемся в области высокого η_D . Это имеет практический интерес, если в силу конструктивных особенностей транзистора нельзя подать высокое значение V'_{GSm} , но можно создать $Z(3f_0) >> Z(f_0)$. Либо когда $Z(3f_0)$ ограничено, но допустимо повысить V'_{GSm} . На рис. 6 показаны зависимости $P_{OUT}(V'_{GSm}, Z(3f_0))$. Рост P_{OUT} при увеличении V'_{GSm} вызван увеличением I_{Im} в (3).

Для сравнения энергетических характеристик насыщенного УМ класса F, полученных при различных значениях $|Z_{Cout}(f_0)|$ с расчетными характеристиками ненасыщенного УМ, на рис. 4 – 6 оттенками выделены области значений η_D , P_{DISS} , P_{OUT} и линии равных значений η_D , P_{DISS} и P_{OUT} , приведенные в табл. 1. В табл. 1 приведены значения V'_{GSm} и $Z(3f_0)$, соответствующие насыщению η_D .

Таблица І

	V'_{GSm}/V_{GSm}	$Z(3f_0)/Z(f_0)$	η _D , %	P_{OUT} ,	P_{DISS}, Bm
Идеальный УМ ($V_K =$	1	∞	90,69	2,165	0,222
Ненасыщенный УМ	1	∞	84,54	2,018	0,369
$\left Z_{Cout}(f_0)\right = R/10$	1,59	2,24	89,74	2,265	0,258
$\left Z_{Cout}(f_0)\right = R$	2,18	3,67	92,14	2,500	0,213
$\left Z_{Cout}(f_0)\right = 10R$	5,73	6,09	94,27	2,777	0,165

Из рис. 4, *a*, рис. 6, *a* и данных табл. 1 следует, что при $|Z_{Cout}(f_0)| = R/10$ значения η_D и P_{OUT} насыщенного УМ класса F выше расчетных η_D и P_{OUT} ненасыщенного УМ класса F. Это объясняется тем, что в ненасыщенном УМ класса F напряжение V_{DS} не может быть меньше V_K (рис. 1, δ). Это способствует дополнительным потерям, возникающим при перекрытии форм V_{DS} и I_D . В насыщенном УМ класса F минимум V_{DS} всегда ниже V_K (рис. 1, δ), что положительно отражается на росте η_D и P_{OUT} , поскольку большая часть тока I_D протекает при низком напряжении V_{DS} .

Также из рис.4 – 6 и табл. 1 следует, что при увеличении $|Z_{Cout}(f_0)|$ происходит рост η_D и P_{OUT} . В частности, когда $|Z_{Cout}(f_0)| = R$ и $|Z_{Cout}(f_0)| = 10R$ значения η_D и P_{OUT} превосходят η_D и P_{OUT} , рассчитанные по формулам (3) – (5) при $V_K = 0$ (табл. 1). Чтобы объяснить причину роста η_D и P_{OUT} , проанализируем формы I_D и V_{DS} (рис. 7), полученные при разных значениях $|Z_{Cout}(f_0)|$. На рис. 7, *а* видно, что при $|Z_{Cout}(f_0)| = R/10$ формы I_D и V_{DS} близки к случаю рис. 1, δ , когда V_{DS} содержит только первую и третью гармоники напряжения. Как следует из (7), при $|Z_{Cout}(f_0)| = R/10$, C_{out} на всех высших гармониках (n = 4, 5 - 20) создает импедансы, которые намного меньше $Z(f_0)$, поэтому уровень высших гармоник напряжения в форме V_{DS} незначителен (рис. 8, a). В случаях, когда $|Z_{Cout}(f_0)| = R$ и $|Z_{Cout}(f_0)| = 10R$ высшие гармоники V_{DS} больше (рис. 8, δ , ϵ) чем при $|Z_{Cout}(f_0)| = R/10$. Как видно из рис. 7, δ , в это приводит к уплощению формы V_{DS} , в результате чего перекрытие форм I_D и V_{DS} уменьшается (снижается P_{DISS}), и η_D , P_{OUT} растут (табл. 1). Поэтому, для повышения η_D и P_{OUT} в насыщенном УМ класса F с управлением ограниченным числом гармоник нужно использовать транзисторы с такой C_{out} , чтобы $|Z_{Cout}(f_0)|$ был сравним либо выше R.

На рис. 9, б, в, г показаны фазовые диаграммы для первых трех гармоник тока и напряжения, полученных для насыщенного УМ класса F при различных значениях $|Z_{Cout}(f_0)|$. Из рис. 9, б, в, г видно, что фазовые сдвиги между гармониками тока и напряжения очень близки к теоретическим фазовым сдвигам ненасыщенного УМ класса F (рис. 9, a). Их отличие от рис. 9, a, вызвано тем, что в насыщенном УМ класса F ток I_D зависит от V_{DS} . Но когда V_{DS} содержит высшие гармоники напряжения (рис. 8), образованные за счет C_{OUT} , это приводит к дополнительным искажениям I_D (рис. 7) и отклонению вазовых сдвигов от случая (рис. 9, a). Из рис. 7 можно увидеть, что это также способствует нарушению симметрии форм I_D .

Отметим, что в зависимости от того, по каким функциям происходит разложение в ряд Фурье форм I_D и V_{DS} , начальные сдвиги фаз гармоник токов и напряжений ξ_n и ψ_n отличаются друг от друга, что может поставить в затруднение разработчика. Если в момент времени t = 0ток I_D максимален, разложение выполняется по косинусам. Если при t = 0 ток $I_D = 0$, разложение выполняется по синусам. Поэтому, когда говорят, что третья гармоника тока противофазна первой гармонике тока, то имеют в виду, что разложение I_D выполнено по косинусам. В табл. 2 приведены ξ_{1-3} и ψ_{1-3} первых трех гармоник, полученные при разложении в ряд

Фурье форм I_D и V_{DS} по синусам и косинусам. Значения ψ_2 в табл. 2 не указаны, поскольку в УМ класса F $V_{2m} = 0$.

Экспериментальное исследование насыщенного УМ класса F

Схема экспериментального макета УМ класса F показана на рис. 10. Резисторы $R_1 - R_3$ образуют делитель, обеспечивающий напряжение смещения V_{GG} . Емкости C_1 , C_6 – блокировочные, C_2 , C_3 – обеспечивают фильтрацию помех в цепи питания, L_1 – дроссель.

Элементы секции 1 нагрузочной цепи (рис. 10) вычисляются по формулам [7]:

$$L_2 = 1/6\omega_0^2 C$$
, $L_3 = 5/3L_2$, $C_5 = 12/5C$, (10)

где $C = C_{out} + C_4$, $\omega_0 = 2\pi f_0$. Данная секция обеспечивает на кристалле транзистора, $Z(3f_0) \rightarrow \infty$ и $Z(2f_0) = 0$. Поскольку C_{out} зависит от V_{DD} , в цепи (рис. 10) был использован конденсатор C_4 , с помощью которого можно настроить секцию 1. Для транзистора 2N7000L $C_{out} = 25$ пФ при $V_{DD} = 25$ В [12]. К секции 1 последовательно подключена секция 2 (рис. 10), которая на f_0 трансформирует сопротивление нагрузки R_{LOAD} в R, а на $3f_0$ – создает импеданс, близкий к бесконечности. В секции 2 элементы L_4 и C_7 образуют параллельный контур, настроенный на $3f_0$, который не позволяет трансформирующей цепи, состоящей из элементов C_9 , C_{10} и L_5 , влиять на $Z(3f_0)$, создаваемый секцией 1. Для настройки $Z(3f_0)$ используется емкость C_7 . На f_0 секция 1 нагружена на R, поскольку C_8 совместно с C_7 и L_4 создает последовательный контур. Поэтому на кристалле транзистора $Z(f_0) = R$. Значение C_8 вычисляется по формуле (11)

$$C_8 = \left(1 - \omega_0^2 L_4 C_7\right) / \omega_0^2 L_4 . \tag{11}$$

Значения L_4 и C_7 в (11) должны быть такими, чтобы C_8 было положительным. В противном случае последовательный контур не будет настроен на f_0 , что приведет к изменению расчетного $Z(f_0)$. В табл. 3 приведены номиналы элементов схемы (рис. 10).

Табли	ца 3
-------	------

	Расчет	Эксперимент		Расчет	Эксперимент
Элемент	Номинал	Номинал	Элемент	Номинал	Номинал
Cout	25 nΦ	25 nΦ	C_{10}	610,3 <i>nΦ</i>	622,3 nΦ
C_1	10 нФ	10 нФ	L_1	150 мкГн	150 мкГн
C_2	$100 n\Phi$	100 nΦ	L_2	459,2 <i>нГн</i>	460 <i>нГн</i>
C_3	10 мкФ	10 мкФ	L_3	765,3 <i>нГн</i>	765 нГн
C_4	25 nΦ	25 nΦ	L_4	400 нГн	400 нГн
C_5	120 nΦ	116 nΦ	L_5	588,4 <i>нГн</i>	590 <i>нГн</i>
C_6	10 нФ	10 нФ	R_1	3,15 кОм	3,15 кОм
C_7	38,3 nΦ	29,3 nΦ	R_2	39 кОм	39 кОм
C_8	306,1 <i>nΦ</i>	$305 n\Phi$	R_3	0,42 кОм	0,42 кОм
C_{9}	$339 n\Phi$	$322.6 n\Phi$	RIDAD	50 Ом	50 Ом

В ячейках, выделенных серым цветом, приведены расчетные номиналы и номиналы элементов настроенного экспериментального макета. Отличие вызвано индуктивностями и емкостями монтажа элементов схемы и паразитными свойствами катушек индуктивности и конденсаторов.

Измеренные импедансы, создаваемые нагрузочной цепью (рис. 10) на кристалле транзистора, были равны: $Z(f_0) = 178, 4 + j0 \ Om$, $Z(2f_0) = 1, 8 + j5, 3 \ Om$, $Z(3f_0) = 1787 + j0 \ Om$. На высших гармониках (при n > 3) основной вклад в импеданс на кристалле транзистора из всех элементов нагрузочной цепи вносит емкость $C = C_{out} + C_4$. Его значение можно оценить с помощью (7), подставив вместо C_{out} значение $C = 50 \ n\Phi$ и выбрав номер гармоники n.

При заданных импедансах в исследуемом УМ были получены зависимости P_{OUT} , P_{DISS} , η_D и КПД по добавленной мощности (*PAE*) (power-added efficiency) от амплитуды входного сигнала V'_{GSm} (рис. 11). *PAE* вычислялся по формуле [14]

$$PAE = \frac{P_{OUT} - P_{In}}{P_{DC}} 100\%,$$
(12)

где P_{In} – мощность, поступающая на вход усилителя, которая на рабочей частоте была незначительна: $P_{In} = (0,54 - 15)10^{-3} Bm$ при $V'_{GSm} = (1-5,3) V_{GSm}$. Этим объясняется слабое отличие *PAE* от η_D на рис. 11. Значение V'_{GSm} , при котором η_D и *PAE* максимальны, приведено в табл.4. В рассмотренном случае, $|Z_C(f_0)| = 1,3R$, что близко к случаю, когда $|Z_{Cout}(f_0)| = R$.

$\left Z_{C}(f_{0})\right $	1,3 <i>R</i>	P _{In} , мВт	2,3
V_{GSm}'/V_{GSm}	2,06	P _{OUT} , Bm	2,226
$Z(3f_0)/Z(f_0)$	15,53	P' _{OUT} , Bm	2,486
$\eta_{D,}$ %	83,21	P_{DISS}, Bm	0,449
η′ _{D,} %	92,93	P'_{DISS}, Bm	0,189
PAE,%	83,14	P_r, Bm	0,260
<i>PAE'</i> ,%	92,85		

Таблица 4

Полученные в эксперименте η_D и P_{OUT} ниже, чем в случае 2, вследствие мощности P_r (табл. 4), рассеиваемой в пассивных элементах цепи. Чтобы определить η'_D , P'_{OUT} и PAE' для усилителя без потерь, с помощью (13) были найдены новые значения P'_{OUT} и P'_{DISS} (табл. 4):

$$P'_{OUT} = P_{OUT} + P_r, \quad P'_{DISS} = P_{DISS} - P_r.$$
(13)

ISSN 0485-8972 Радиотехника. 2014. Вып. 178

Значения η'_D и *PAE'* были найдены подстановкой в (5) и (12) P'_{OUT} и P'_{DISS} (табл. 4). Полученный η'_D чуть выше, чем η_D в случае 2 (табл. 1), что вызвано большим значением $Z(3f_0)$. Сами же η_D и P_{OUT} (табл. 1), слабо отличаются от η'_D и P'_{OUT} , что говорит о высоком соответствии упрощенной модели транзистора (рис. 3) реальному транзистору. На рис. 12 показаны формы I_D , V_{DS} и фазовые диаграммы первых трех гармоник тока и напряжения (рис. 13), которые были получены экспериментально. Также показан спектр V_{DS} (рис. 14).

Выводы

Проаналировано влияние уровня входного сигнала V'_{GSm} и элементов выходной цепи усилителя на спектральный состав токов и напряжений насыщенного УМ класса F. Для трех различных импедансов, создаваемых выходной емкостью транзистора, были найдены значения импедансов на третьей гармонике $Z(3f_0)$, при которых происходит насыщение η_D и определены значения V'_{GSm} при которых достигается максимум η_D .

Было показано, что насыщенный УМ класса F обладает более высокими η_D и P_{OUT} , чем ненасыщенный УМ класса F. Причиной этому служило напряжением перегиба транзистора $V_{\rm K}$, которое в ненасыщенном УМ класса F ограничивает η_D и P_{OUT} . В насыщенном УМ класса F такое ограничение отсутствует.

Было установлено, что увеличение $|Z_{Cout}(f_0)|$ (уменьшение C_{out}) обеспечивает рост η_D и P_{OUT} . Данный рост объяснялся тем, что на высших гармониках тока (n > 3), $|Z_{Cout}(nf_0)|$ способствует образованию гармоник напряжения, которые делают форму напряжения V_{DS} более плоской по сравнению с формой V_{DS} , содержащей первую и третью гармонику.

Экспериментально в насыщенном УМ класса F, выполненном на транзисторе 2N7000L на рабочей частоте 13,56 *МГц*, был получен $n_D = 83,21\%$ и *PAE* = 83,14\%, при $P_{OUT} = 2,226Bm$. Расчетные η'_D , *PAE*' и *P'_{OUT}* для случая УМ без потерь в пассивных элементах цепи составили: $\eta_D = 92,93\%$, *PAE*' = 92,85\%, $P'_{OUT} = 2,486Bm$.

Список литературы: 1. Stameroff A. F. Wide-Bandwidth Power-Combining and Inverse Class-F GaN Power Amplifier at X-Band // IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 3, March 2013. P. 1291-1300. 2. Kenle C. Design of Broadband Highly Efficient Harmonic-Tuned Power Amplifier Using In-Band Continuous Class-F1/F Mode Transferring // IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 12, December 2012. P. 4107-4116. 3. He T. Design of a Class F Power Amplifier // PIERS Online, Vol. 6, No. 2, 2010. Р. 141 – 144. 4. Крыжановский В. Г., Ефимович А. П. Влияние потерь в резонансных контурах на работу усилителя класса F // Радиотехника. - 2012. - Вып. 170. - С.59 - 65. 5. Ефимович А. П., Крыжановский В. Г. Компенсация паразитных элементов транзистора с настройкой импедансов на гармониках в усилителе класса F // Технология и конструирование в электронной аппаратуре. Одесса, 2014. – №1. – С.3– 10. 6. Yefymovych. A. P, Krizhanovski V. G. Design Load Network for Class-F Amplifier // Modern Problems of Radio Engineering, Telecommunications and Computer Science. Proceedings of the international Conference TCSET'2014. Lviv-Slavske, Ukraine, February 25 - March 1, 2014. - P. 206. 7. Grebennikov A. Load Network design technique for Class F and Inverse Class F Power Amplifiers // High Frequency Electronics, Vol. 10, No. 5, May 2011. - P. 58-76. 8. Kuroda K., Ishikawa R., Honjo K. Parasitic Compensation Design Technique for a C-Band GaN HEMT Class-F Amplifier // IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 11, November 2010, P. 2741-2750. 9. Colantonio P., Giannini F., Leuzzi G., Limiti E. On the Class-F Power Amplifier Design // Intern. Journal of RF and Microwave Computer-Aided Engineering, Vol. 9, No. 2, March 1999, P. 129-149. 10. Moon J., Jee S., Kim J., Kim B. Behaviors of Class-F and Class-F-1 Amplifiers // IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, June 2012. P. 1937-1951. 11. Raab F. H. Maximum Efficiency and Output of Class-F Power Amplifiers // IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No.6, June 2001, P. 1162–1166. 12. ALL Transistors Datasheet. [Электронный ресурс]. – Режим доступа: http://alltransistors.com, свободный (дата обращения: 10.04.2014). 13. Shichman H., Hodges D. Modeling and Simulation of Insulated-Gate Field-Effect Transistor Circuits // IEEE J. of Solid-State Circuits, Vol. 3, No. 3, Sept 1968. P. 285-289. 14. Colantonio P., Giannini F., Limiti E. High Efficiency RF and Microwave Solid State Power Amplifiers. USA, New York .: Wiley, 2009. P. 520. 15. Colantonio P., Giannini F., Limiti E. HF Class F Design Guidelines // XV Int. Conf. Microwaves. «Radar and Wireless Communications MIKON, 2004». Warszawa, Poland, May 17-21, 2004, Vol.1, P. 27-38.

Донецкий национальный университет

Поступила в редколлегию 17.08.2014