М. А. ГНАТЮК, В. М. МОРОЗОВ, канд. физ.-мат. наук ПРИМЕНЕНИЕ МЕТОДА ШВАРЦА К РАСЧЕТУ ВОЛНОВОДНЫХ ФАР ПРИ НАЛИЧИИ ДИЭЛЕКТРИЧЕСКИХ ВСТАВОК И ПОКРЫТИЯ

Введение

Анализ характеристик фазированных антенных решеток (ΦAP) с учетом всех особенностей электродинамических процессов, определяющих ее работу, - сложная задача, решаемая методами математического моделирования на высокопроизводительных ЭВМ и требующая существенных вычислительных затрат. Одним из эффективных подходов в решении таких задач является метод интегрального уравнения. В работе [1] рассмотрено применение метода интегральных уравнений частичных областей к расчету волноводных ФАР, представлены численные результаты расчетов и характеристики волноводных антенных решеток различных типов. Также эффективным является метод интегрального уравнения частичных пересекающихся областей [2], предусматривающий разбиение всей области определения поля на простые пересекающиеся подобласти, для которых решение задачи известно. Подобный подход используется и в альтернирующем методе Шварца. Этот метод используется для задач, дифференциальные уравнения которых удовлетворяют принципу максимума. К таким задачам относится, например, расчет длин критических волн регулярных волноведущих структур с некоординатным поперечным сечением [3]. Однако представляет интерес исследование границ применимости метода Шварца к решению неоднородных уравнений Гельмгольца. Так, в работе [4] итерационным методом Шварца с использованием тензорных функций Грина решена векторная задача о соосном стыке двух прямоугольных волноводов различного поперечного сечения. В работе [5] методом Шварца выполнен расчет коэффициента отражения в одиночной ячейке бесконечной волноводной антенной решетки с конечной толщиной стенок при наличии диэлектрического заполнения волноводов. Таким образом, исследование применимости метода Шварца к решению волноводных задач является актуальным.

В настоящей работе рассмотрен электродинамический алгоритм решения задачи дифракции электромагнитной волны на бесконечной линейной антенной решетке из плоскопараллельных волноводов с конечной толщиной стенок при наличии диэлектрических вставок и покрытия. Алгоритм основан на сведении неоднородного уравнения Гельмгольца к интегральному уравнению Фредгольма второго рода с использованием аппарата функций Грина. Полученное интегральное уравнение было решено методом последовательных приближений.

Постановка задачи

Рассмотрим бесконечную линейную фазированную антенную решетку (ФАР) из плоских волноводов с конечной толщиной стенок, сканирующую в *H*-плоскости. Считаем, что элементы решетки возбуждаются полями с одинаковыми амплитудами и фазами, меняющимися по линейному закону. Поля во всех периодических ячейках оказываются одинаковыми, а фаза изменяется на постоянную величину при переходе от элемента к элементу. Поэтому поле будем определять в одной ячейке, расположенной в начале координат. При выводе интегральных уравнений в качестве неизвестной функции будем использовать E_y компоненту поля, удовлетворяющую двумерному уравнению Гельмгольца, граничным условиям для тангенциальных составляющих вектора электрического поля на металлических стенках и условию излучения:

$$\Delta E_{y}(x,z)+k^{2}E_{y}(x,z)=-J(x,z).$$

Решение этой задачи методом Шварца заключается в сведении дифференциального уравнения в частных производных к системе интегральных уравнений пересекающихся областей и её решении методом последовательных приближений [6].

В зависимости от наличия диэлектрических вставок или покрытия волноводов решетки решение задачи будет иметь свои особенности. В первую очередь рассмотрим решение задачи для ФАР, волноводы которой имеют диэлектрические вставки (рис. 1, *a*).

тис. т

Разобьем всю область определения поля в выбранной ячейке на две пересекающиеся области. Область I: $-a/2 \le x \le a/2$, $-\infty \le z \le \infty$. Область II: $-b/2 \le x \le b/2$, $0 \le z \le \infty$. В области I при $z \to -\infty$ возбуждается волна H_{10} плоского волновода. Предположим, что известны функции Грина областей I и II. Тогда, воспользовавшись второй формулой Грина, можно составить систему интегральных представлений для поля каждой из областей:

$$E_{\mathrm{I}}(\mathbf{x}, \mathbf{z}) = E_{cm}(\mathbf{x}, \mathbf{z}) + \int_{0}^{\infty} E_{\mathrm{II}}\left(\mathbf{x}' = -\frac{a}{2}, \mathbf{z}'\right) \frac{\partial}{\partial \mathbf{x}'} G_{\mathrm{I}}\left(\mathbf{x}, \mathbf{z}; \mathbf{x}' = -\frac{a}{2}, \mathbf{z}'\right) d\mathbf{z}' - \int_{0}^{\infty} E_{\mathrm{II}}\left(\mathbf{x}' = \frac{a}{2}, \mathbf{z}'\right) \frac{\partial}{\partial \mathbf{x}'} G_{\mathrm{I}}\left(\mathbf{x}, \mathbf{z}; \mathbf{x}' = \frac{a}{2}, \mathbf{z}'\right) d\mathbf{z}';$$

$$E_{\mathrm{II}}\left(\mathbf{x}', \mathbf{z}'\right) = \int_{-\frac{a}{2}}^{\frac{a}{2}} E_{\mathrm{I}}\left(\mathbf{x}'', \mathbf{z}'' = 0\right) \frac{\partial}{\partial \mathbf{z}''} G_{\mathrm{II}}\left(\mathbf{x}', \mathbf{z}'; \mathbf{x}'', \mathbf{z}'' = 0\right) d\mathbf{x}''.$$
(1)

Здесь E_{cm} – функция источника, G_{I} и G_{II} – функции Грина каждой области. Для области I переменные x и z описывают координаты точек наблюдения, а x'и z' точек источников. Для области II: x'и z' – точки наблюдения, x''и z'' – точки источников.

Далее найдем функцию Грина для каждой области. В связи с наличием диэлектрической вставки с проницаемостью равной ε_{dw} в области I, эту область необходимо разделить на три подобласти: подобласть w – плоскопараллельный волновод без диэлектрического заполнения, подобласть dw – волноводная вставка ($-l_w \le z \le 0$), подобласть f – волновод без диэлектрического заполнения, продолженный в бесконечность.

Функции Грина представим в истокообразной форме [7]:

$$G_{\mathrm{I}}(x,z;x',z') = \sum_{q=0}^{\infty} \phi_q(x) \phi_q(x') f_q^{\mathrm{I}(dw)}(z,z');$$

ISSN 0485-8972 Радиотехника. 2017. Вып. 190

$$G_{\rm II}(x',z';x'',z'') = \sum_{m=-\infty}^{\infty} \psi_m(x')\psi_m^*(x'')f_m^{\rm II}(z',z'');$$

Здесь индексы I II обозначают номера областей, *т* и *q* – индексы типов волн, знак «*» – комплексное сопряжение. Поперечные собственные функции областей 1 и 2:

$$\varphi_q(x) = \sqrt{\frac{2}{a}} \sin\left[\frac{q\pi}{a}\left(x + \frac{a}{2}\right)\right]; \ \psi_m(x) = \sqrt{\frac{1}{b}} \exp\left(j\frac{U_m}{b}x\right);$$

где $U_m = k^f b \sin \theta + 2m\pi$ – управляющий сдвиг фаз.

Выражение для продольного волнового числа плоскопараллельного волновода для каждой подобласти имеет вид

$$\gamma_q^w = \gamma_q^f = -j\sqrt{\left(\frac{q\pi}{a}\right)^2 - \left(k^f\right)^2}; \ \gamma_q^{dw} = -j\sqrt{\left(\frac{q\pi}{a}\right)^2 - \left(k^{dw}\right)^2}; \quad k^f = 2\pi; \quad k^{dw} = 2\pi\sqrt{\varepsilon}.$$

Продольное волновое число области II:

$$\Gamma_m = -j \sqrt{\left(\frac{U_m}{b}\right)^2 - \left(k^f\right)^2};$$

Продольная функция Грина области II:

ſ

$$f_m^{\mathrm{II}}(z',z'') = \frac{1}{j\Gamma_m} \exp\left(-j\Gamma_m z'\right) sh\left(j\Gamma_m z''\right).$$

Продольная функция Грина плоскопараллельного волновода f(z,z') представляется в виде суммы падающей и отраженной волн, и её вид меняется в зависимости от положения точек источников и точек наблюдения. Исходя из постановки задачи, координаты точек источников поля области I по оси Oz принимают значения $0 \le z' \le \infty$, тогда выражение для продольной функции Грина этой области имеет вид

$$\begin{cases} f_q^{I(w)}(z,z') = t_1 \exp\left(j\gamma_q^w \left[z+l_w\right]\right), & z \le -l_w; \\ f_q^{I(dw)}(z,z') = t_2 \exp\left(-j\gamma_q^{dw} \left[z+l_w\right]\right) + t_3 \exp\left(j\gamma_q^{dw}z\right), & -l_w \le z \le 0; \\ f_q^{I(f)}(z,z') = t_4 \exp\left(-j\gamma_q^f z\right) + \frac{\exp\left(-j\gamma_q^f \left|z-z'\right|\right)}{2j\gamma_q^f}, & z \ge 0. \end{cases}$$

Здесь t_1, t_2, t_3, t_4 – неизвестные коэффициенты. Точки наблюдения расположены в подобласти dw, $-l_w \le z \le 0$, т. о, необходимо отыскать значения только коэффициентов t_2 и t_3 . Для этого приравняем значение функции и её производной на границах раздела сред и составим систему линейных алгебраических уравнений, решая которую, получим выражение для продольной функции Грина области I при $-l_w \le z \le 0$:

$$f_q^{I(dw)}(z,z') = \frac{1}{\Delta_I} \left[\left(j\gamma_q^{dw} - j\gamma_q^w \right) \cdot \exp\left(-j\gamma_q^{dw} \cdot 2 \cdot l_w \right) \cdot \exp\left(-j\gamma_q^{dw} z \right) + \left(j\gamma_q^{dw} + j\gamma_q^w \right) \cdot \exp\left(j\gamma_q^{dw} z \right) \right] \exp\left(-j\gamma_q^f z' \right)$$

Подставим выражение (2) в (1), учитывая полученные значения функций Грина, зафиксируем точки источников и точки наблюдения, а также изменим порядок интегрирования. В результате получим интегральное представление для поля области I:

$$E_{\mathrm{I}}(x,z) = E_{cm}(x,z) + \sum_{m=-\infty}^{\infty} \sum_{q=0}^{\infty} \phi_{q}(x) \left\{ \frac{\partial \phi_{q}\left(x'=-\frac{a}{2}\right)}{\partial x'} \psi_{m}\left(x'=-\frac{a}{2}\right) - \frac{\partial \phi_{q}\left(x'=\frac{a}{2}\right)}{\partial x'} \psi_{m}\left(x'=\frac{a}{2}\right) \right\} \times (3)$$

$$\times \int_{-\frac{a}{2}}^{\frac{a}{2}} \left[E_{\mathrm{I}}\left(x'',z''=0\right) \psi_{m}^{*}\left(x''\right) \right] dx'' \int_{0}^{\infty} \frac{\partial f_{m}^{\mathrm{II}}\left(z',z''=0\right)}{\partial z''} f_{q}^{\mathrm{I}(d\,w)}(z,z') dz'.$$

Функция источника представляет собой падающую волну H_{10} с учетом отражения от диэлектрической вставки для бесконечного плоскопараллельного волновода. В зависимости от расположения точек наблюдения функция источника принимает вид

$$\begin{cases} E_{cm}^{(w)}(x,z) = \varphi_{1}(x) \exp\left(-j\gamma_{1}^{(w)}[z+l_{w}]\right) + R0^{(w)}\varphi_{1}(x) \exp\left(j\gamma_{1}^{(w)}[z+l_{w}]\right); \\ E_{cm}^{(dw)}(x,z) = T0^{(dw)}\varphi_{1}(x) \exp\left(-j\gamma_{1}^{(dw)}[z+l_{w}]\right) + R0^{(dw)}\varphi_{1}(x) \exp\left(j\gamma_{1}^{(dw)}z\right); \\ E_{cm}^{(f)}(x,z) = T0^{(f)}\varphi_{1}(x) \exp\left(-j\gamma_{1}^{(f)}[z]\right). \end{cases}$$

При $-l_w \le z \le 0$ необходимо найти $T0^{(dw)}$ и $R0^{(dw)}$ – коэффициенты прохождения и отражения волны H_{10} в диэлектрической вставке.

Приступим к решению интегрального представления (3) методом последовательных приближений. В качестве нулевого приближения искомого поля целесообразно выбрать функцию E_{ct} . Выполняя последовательно итерационный процесс, получим выражение для нахождения поля в приближении *К*-порядка при *z*=0:

$$E_{I}^{\langle K \rangle}(x,0) = E_{cm}(x,0) + \sum_{q_{K}=-\infty}^{\infty} \varphi_{q}(x) \cdot V_{q_{K}}^{\langle K \rangle};$$

$$V_{q_{K}}^{\langle K \rangle} = \sum_{m_{K}=-\infty}^{\infty} \sum_{q_{K}=0}^{\infty} V_{q_{(K-1)}}^{\langle K-1 \rangle} \frac{D_{m_{K}q_{(K-1)}}C_{m_{K}q_{K}}U_{q_{K}}(0)}{j(\Gamma_{m_{K}q_{K}} + \gamma_{m_{K}q_{K}})};$$

$$V_{1}^{\langle 0 \rangle} = T0^{(dw)} \exp\left(-j\gamma_{1}^{(dw)}l_{w}\right) + R0^{(dw)}.$$

$$(4)$$

Для определения величины коэффициента отражения поле в подобласти *dw* представим в виде суммы падающих и отраженных волн:

$$E_{\mathrm{I}}^{(dw)}(x,z) = T0^{(dw)}\varphi_{1}(x)\exp\left(-j\gamma_{1}^{(dw)}[z+l_{w}]\right) + R0^{(dw)}\varphi_{1}(x)\exp\left(j\gamma_{1}^{(dw)}z\right) + \sum_{q=1}^{\infty}\left(T_{q}^{(dw)}\exp\left(-j\gamma_{q}^{(dw)}[z+l_{w}]\right) + R_{q}^{(dw)}\exp\left(j\gamma_{q}^{(dw)}z\right)\right)\varphi_{q}(x), \quad -l_{w} \leq z \leq 0.$$
(5)

Подставляя это представление в левую часть (4) с одновременным усечением числа учитываемых типов волн, получим выражение для определения величины суммы падающей и отраженной волн типа *H*₁₀ при *z*=0 в итерации *K*-порядка:

$$T_1^{(dw)} \exp\left(-j\gamma_1^{(dw)}l_w\right) + R_1^{(dw)} = \sum_{k=1}^K V_1^{\langle K \rangle}.$$
(6)

ISSN 0485-8972 Радиотехника. 2017. Вып. 190

Таким образом, найдено распределение поля на раскрыве излучателя, в плоскости z=0. Для того чтобы найти коэффициент отражения в волноводной области ($z<-l_w$), воспользуемся условием непрерывности касательных компонент векторов напряженности электрического поля на границах раздела сред. Поле в подобласти *w* можно представить в виде

$$E_{I}^{(w)}(x,z) = \varphi_{1}(x) \exp\left(-j\gamma_{1}^{(w)}[z+l_{w}]\right) + \sum_{q=1}^{\infty} R_{q}^{(w)} \varphi_{q}(x) \exp\left(j\gamma_{q}^{(w)}[z+l_{w}]\right), \quad z \le -l_{w}; \quad (7)$$

Поле в подобласти *dw* представим в виде в (5). Поле на раскрыве (*z*=0) представим в виде, показанном в (6). $R_q^{(w)}$ представляет собой искомый коэффициент отражения *q*-й волны в области волновода. Приравнивая выражения (5) и (7) и их производные в точке $z=-l_w$, а также учитывая распределение поля на раскрыве (6), составим систему линейных уравнений и найдем коэффициент отражения волны H_{10} (*q*=1):

$$\begin{cases} 1 + R_1^{(w)} = T_{dw} + R_{dw} \exp\left(-j\gamma_1^{dw}l_w\right) + T_1^{(dw)} + R_1^{(dw)} \exp\left(-j\gamma_1^{dw}l_w\right) \\ -j\gamma_1^{(w)} + j\gamma_1^{(w)}R_1^{(w)} = -j\gamma_1^{(dw)}T_{dw} + j\gamma_1^{dw}R_{dw} \exp\left(-j\gamma_1^{dw}l_w\right) - j\gamma_1^{dw}T_1^{dw} + j\gamma_1^{dw}R_1^{dw} \exp\left(-j\gamma_1^{dw}l_w\right) \\ T_1^{(dw)} \exp\left(-j\gamma_1^{(dw)}l_w\right) + R_1^{(dw)} = \sum_{k=1}^K V_1^{\langle K \rangle} \end{cases}$$

Решая эту систему уравнений, можно найти значение неизвестной R_1^w , которая представляет собой значение коэффициента отражения волны H_{10} в волноводе.

Рассмотрим случай наличия диэлектрического покрытия волноводов. Единичная ячейка ФАР изображена на рис. 1, δ . Волноводы решетки имеют диэлектрическое покрытие толщиной l с относительной диэлектрической проницаемостью ε_d . Вся область определения поля разделяется на пересекающиеся области, аналогичные предыдущей задаче. Также, в связи с наличием диэлектрического покрытия, в каждой области выделяется несколько подобластей. В области 1 выделяются подобласти w – плоскопараллельный волновод без диэлектрического заполнения, продолженный в бесконечность $l \le z$. В области 2 выделяются две подобласти: подобласть d – «канал Флоке» с диэлектрическим покрытием ($0 \le z \le l$), подобласть f – канал Флоке» без диэлектрического заполнения. Интегралы в (1) представим в виде суммы интегралов по каждой подобласти. Тогда система интегральных представлений принимает вид:

$$E_{\rm I}(x,z) = E_{cm}(x,z) + \int_{0}^{l} E_{\rm II}\left(x' = -\frac{a}{2}, z'\right) \frac{\partial}{\partial x'} G_{\rm I}^{(d)}\left(x, z; x' = -\frac{a}{2}, z'\right) dz' + \\ + \int_{l}^{\infty} E_{\rm II}\left(x' = -\frac{a}{2}, z'\right) \frac{\partial}{\partial x'} G_{\rm I}^{(f)}\left(x, z; x' = -\frac{a}{2}, z'\right) dz' - \\ \int_{0}^{l} E_{\rm II}\left(x' = \frac{a}{2}, z'\right) \frac{\partial}{\partial x'} G_{\rm I}^{(d)}\left(x, z; x' = \frac{a}{2}, z'\right) dz' \\ - \int_{l}^{\infty} E_{\rm II}\left(x' = \frac{a}{2}, z'\right) \frac{\partial}{\partial x'} G_{\rm I}^{(f)}\left(x, z; x' = \frac{a}{2}, z'\right) dz'; \\ E_{\rm II}\left(x', z'\right) = \int_{-\frac{a}{2}}^{\frac{a}{2}} E_{\rm I}\left(x'', z'' = 0\right) \frac{\partial}{\partial z''} G_{\rm II}\left(x', z'; x'', z'' = 0\right) dx''.$$
(9)

ISSN 0485-8972 Радиотехника. 2017. Вып. 190

При построении функций Грина необходимо учитывать расположение точек источников и наблюдения. В (8) точки наблюдения x, z расположены в подобласти w, a точки x' z' источников находятся в областях d и f в зависимости от пределов интегрирования. В (9) точки источников x",z" расположены в области d, a точки наблюдения x', z' – в областях d, f в зависимости от пределов интегрирования после подстановки в (8). С учетом этого найдем функции Грина для каждой из областей. Как и ранее, эти функции представляются в истокообразной форме. Продольные функции Грина каждой области находятся путем представления их в виде суммы падающей и отраженной волн с последующим решением системы линейных алгебраических уравнений относительно неизвестных коэффициентов.

Таким образом, продольная функция Грина области 1 находится при расположения точек наблюдения в подобласти z<0, а точек источников в подобласти 0<z'<l и подобласти l<z'. Продольная функция Грина области 2 находится для расположения точек наблюдения в подобласти 0<z'<l и подобласти l<z' а точек источников в подобласти 0<z''<l.

						Таблица І
K	$ R_{10} $					
	m=1, q=2	m=2, q=4	m=4, q=8	m=8, q=16	m=16, q=32	m=32, q=64
1	0,6634842	0,6816642	0,6868948	0,6873763	0,6876640	0,6877702
2	0,6448360	0,6364020	0,6333013	0,6311500	0,6306107	0,6305715
3	0,6468947	0,6559663	0,6578299	0,6569607	0,6566618	0,6566581
4	0,6457071	0,6457025	0,6451524	0,6436544	0,6432031	0,6431683
5	0,6459183	0,6503717	0,6509356	0,6497284	0,6493434	0,6493196
6	0,6458739	0,6482800	0,6483694	0,6470413	0,6466284	0,6465999
7	0,6458651	0,6491842	0,6494665	0,6481870	0,6477858	0,6477591
8	0,6458775	0,6488013	0,6490093	0,6477115	0,6473059	0,6472785
9	0,6458687	0,6489604	0,6491955	0,6479042	0,6475002	0,6474730
10	0,6458738	0,6488953	0,6491212	0,6478278	0,6474233	0,6473960
11	0,6458712	0,6489215	0,6491503	0,6478575	0,6474531	0,6474259
12	0,6458724	0,6489111	0,6491391	0,6478462	0,6474417	0,6474146
13	0,6458718	0,6489152	0,6491433	0,6478504	0,6474460	0,6474188
14	0,6458721	0,6489136	0,6491417	0,6478488	0,6474444	0,6474172
15	0,6458720	0,6489142	0,6491423	0,6478494	0,6474450	0,6474178
16	0,6458721	0,6489140	0,6491421	0,6478492	0,6474448	0,6474176
17	0,6458720	0,6489141	0,6491421	0,6478493	0,6474448	0,6474177
18	0,6458720	0,6489140	0,6491421	0,6478493	0,6474448	0,6474177
19	0,6458720	0,6489140	0,6491421	0,6478493	0,6474448	0,6474177
20	0,6458720	0,6489140	0,6491421	0,6478493	0,6474448	0,6474177

Далее составляется интегральное уравнение, которое решается рассмотренным выше методом последовательных приближений. Результат решения этого уравнения представляет собой окончательное значение коэффициента отражения волны *H*₁₀ в волноводе решетки.

Результаты работы

Для рассматриваемой задачи была составлена программа численного расчета на ЭВМ коэффициента отражения падающей волны. Полученные результаты для ФАР с диэлектрической вставкой в зависимости от количества итераций и числа учитываемых типов волн для размеров решетки $b/\lambda=0,5714$, $a=b\cdot(1-0,063)$ приведены в табл. 1. Диэлектрическая проницаемость вставки $\varepsilon_{dw}=2$, её толщина $l_w = 0,618b$, угол сканирования $sin(\theta) = 0,05$. При этом метод частичных пересекающихся областей (МЧПО) для этих условий позволяет получить результат $|R_{10}| = 0,6474449$.

Результаты, приведенные в табл. 1 показывают, что для дальнейших расчетов целесообразно выбрать m=16, q=32 и K равным не более 15. На рис. 2 (сплошные кривые) показаны графики зависимости модуля коэффициента отражения волны H_{10} от угла сканирования $kbsin\theta$ для решетки с диэлектрической вставкой, толщина которой составляет: $l_w = 1,03b$;

0,824*b*; 0,618*b*. Пунктирная кривая на рис. 2 показывает график зависимости модуля коэффициента отражения волны H_{10} от угла сканирования *kbsin* θ для ФАР с диэлектрическим покрытием. Толщина покрытия выбиралась таким образом, чтобы отсутствовало явление распространения поверхностных волн в диэлектрике и составляет $\lambda_{\varepsilon}/8$, относительная диэлектрическая проницаемость материала покрытия ε =3,0625, а размеры решетки *b*/ λ =0,5714, *a*=*b*.

Рис. 2

Выводы

Рассмотрено применение метода Шварца к решению задачи дифракции электромагнитной волны на бесконечной ФАР из плоскопараллельных волноводов при наличии диэлектрической волноводной вставки и покрытия. Получены выражения для определения коэффициента отражения волны H_{10} в единичной ячейке ФАР. Проведено исследование сходимости метода при различном количестве учитываемых типов волн в каждой области, при этом проводилось сравнение с результатами, полученными методом частичных пересекающихся областей для аналогичной задачи. Было установлено, что для получения оптимальной сходимости и скорости расчетов целесообразно выбрать m=16, q=32 и количество итераций $K \le 15$.

Получены графики зависимости модуля коэффициента отражения |R10| от управляющего сдвига фаз *kbsin* θ для диэлектрических вставок с толщинами $l_w = 1,03b$; 0,824*b*; 0,618*b* и ε =2, а также диэлектрического покрытия толщиной $l=\lambda_{\varepsilon}/8 \varepsilon$ =3,0625. Сравнение полученных результатов с результатами из [1] для аналогичных задач показывает корректность построенного алгоритма.

Список литературы: 1. Амитей, Н. Теория и анализ фазированных антенных решеток / Н. Амитей, В. Галиндо, Ч. Ву. – М. : Мир, 1974. – 455 с. 2. Прохода, И. Г. Применение метода частичных пересекающихся областей для расчета волноводных ФАР с апертурными неоднородностями / И. Г. Прохода, В. М. Морозов // Электродинамика и физика СВЧ. – 1980. – С. 34–42. З. Гальченко, Н. А. Применение метода Шварца к расчету параметров П- и Г-волноводов / Н. А. Гальченко, Н. А. Применение метода Шварца к расчету параметров П- и Г-волноводов / Н. А. Гальченко, В. С. Михалевский // Радиотехника и электроника. – 1970. –Т. 15, №1. – С. 51. 4. Гнатюк, М. А. Алгоритм метода Шварца решения трехмерной задачи дифракции / М. А. Гнатюк, В. М. Морозов, А. М. Съянов // Радиотехника. – 2013. – Вып. 174. – С. 10 – 15. 5. Morozov, V. M. Phased antenna array analysis with Schwarz alternating method / V. M. Morozov, M. A. Gnatyuk // Вісник дніпропетров. ун-ту. Сер. «Фізика. Радіоелектроніка». – 2015. – Т. 23. – Вып. 22. – С. 132 – 141. 6. Канторович, Л. В. Приближенные методы высшего анализа / Л. В. Канторович, В. И. Крылов – М. ; Л., 1962. – 708 с. 7. Марков, Г. Т. Математические методы прикладной электродинамики / Г. Т. Марков, Е. Н. Васильев. – М. : Сов. радио, 1970. – 120 с.

Днепровский государственный технический университет

Поступила в редколлегию 15.08.2017