# В.С. КУДРЯШОВ, канд. техн. наук, С.М. ТАМАШ, Д.С. ШМАКОВ

# РОЗНЕСЕНА ДВОХПОЗИЦІЙНА РАДІОМЕТРИЧНА СИСТЕМА КАРТОГРАФУВАННЯ ОБЄКТІВ

## Постановка проблеми

Рознесена радіометрична система (РМС) [6, 7, 9, 13] дозволяє вимірювати кутові координати, різницю ходу та швидкість об'єктів. Картографування земних та космічних об'єктів потребує визначення дальності дії РМС [1 – 4, 11, 12]. У теперішній час відсутній вираз для розрахунку вказаної дальності дії при картографуванні. Задача обґрунтування варіантів рівнянь дальності картографування рознесеної двохпозиційною РМС є важливою та актуальною. При цьому требо врахувати і заважаючі сигнали, які є на розкриві антен кореляційного радіометра, а також розширення смуг пропускання РМС для підвищення енергетичних характеристик та розрізнювальної здатності за різницею ходу.

Аналіз публікацій, які представлені у [1 – 5,7 – 12, 22], не дає можливості визначити дальність дії рознесеної двохпозиційної РМС при картографуванні земних та космічних об'єктів. Лише у публікаціях [6, 12] розглядається виявлення повітряних та наземних цілей без врахування коливань, що заважають, які знаходяться на розкриві антен рознесеної РМС. В статтях [4, 5, 7 – 12] є структурні схеми РМС, результати їх експериментальних досліджень та обробки радіометричних зображень.

Мета статті – обґрунтування варіантів рівнянь дальності дії радіотеплолокаційного спостереження рознесеної двохпозиційною РМС картографування земних та космічних об'єктів, варіантів підвищення розрізнювальних здатностей за різницею ходу та відносною швидкістю об'єктів.

### Виклад основного матеріалу

Загальна схема побудови бортової РМС наведена на рис. 1. Літак рухається над поверхнею з швидкістю  $\vec{V}$ , на ньому знаходяться два просторово рознесені пункти прийому П1, П2 кореляційного радіометра. Відстань між П1, П2 є базою рознесеної системи і позначена на



Рис. 1. Загальна схема побудови бортової РМС картографування земної поверхні

рис. 1 через Б. За час зйомки одної строки поверхні літак її пролітає. Таким чином будується радіометричне зображення. Збільшення вхідної смуги пропускання системи та (або) величини Б збільшує розрізнювальну здатність (РЗ) за різницею хода у кожному положенні антен, тобто зменшує розмір пікселя зображення.

Основним елементом рознесеної двохпозиційної РМС [1 – 3, 10, 16, 22] є кореляційний радіометр. Чутливість кореляційного радіометра [16]:

$$\Delta T_{\min} = \frac{\alpha \left( T_{\Pi p} + T_{a} \right)}{\sqrt{\Pi_{BX} / \Pi_{BMX}}}, \qquad (1)$$

де  $\alpha$  – const кореляційного радіометра ( $\sqrt{2}$ );  $T_{\rm np}$ ,  $T_{\rm a}$  – відповідно температури радіоприймача та антени радіометра;  $\Pi_{\rm BX}$ ,  $\Pi_{\rm BUX}$  – вхідна та вихідна смуги пропускання радіометра.

Широкосмуговий кореляційний радіометр. На основі створених приладів [15] можливо збільшення  $\Pi_{\rm BX}$ , наприклад у шість разів, при переході з 8 до 3 мм діапазону довжин хвиль [19]. Вказане надає зниження  $\Delta T_{\rm min}$ , що важливо при картографуванні малорозмірних

об'єктів (МО). Розширення  $\Pi_{\rm BX}$  узгоджується з регламентом радіозв'язку [19]. Так, при переході з 8 до 3 мм діапазону РЗ за різницею хода по лінії бази підвищується з 0,3 до 0,05 м. Освоєння промисловістю елементної бази більше 275 ГГц дозволить застосовувати  $\Pi_{\rm BX} > 40$  ГГц, що відповідає РЗ за різницею хода по лінії бази <10<sup>-2</sup> м.

Даний підхід може розглядатися і для інфрачервоного діапазону (ІЧ) довжин хвиль. Так, у вікні прозорості атмосфери 3,3 – 4,2 мкм реалізується РЗ за різницею хода по лінії бази 15,4 мкм, що суттєво підвищить якість зображень. Хоча при цьому постає складна науковотехнічна задача створення лінії затримки з багатьма відводами та вибір детекторів.



Рис. 2. Схема широкосмугового кореляційного радіометра

У теперішній час неможливо реалізувати перемножувач радіометра з  $\Pi_{BX}$  6 ГГц. Один з варіантів побудови приладу з необхідною  $\Pi_{BX}$ приведена на рис. 2. На вході встановлено модулятори, які забезпечують «фарбування» сигналів за фазою  $\varphi_i$  з частотами  $f_3$  та  $f_5$ . Якщо  $f_3$ ,  $f_5$ дорівнюють наприклад 1,1 та 1,9 кГц, то взаємна кореляційна функція (ВКФ) корисних сигналів фільтрується на частоті  $f_6$  у 3 кГц. Лінія затримки має відведення через 0,5 ВКФ.

В подальшому (рис. 2) проводиться складання сигналів першого та другого каналів прийому у суматорах ( $\Sigma$ ). Квадратичне детектування на квадраторах та фільтрація на  $f_6$  надає значення ВКФ. Коливання вихідних фільтрів інтеграторів радіометра порівнюються з рівнем порогів  $P_{\rm n}$ . Значення  $P_{\rm n}$  визначає рівень помилкової тривоги F при картографуванні різноманітних поверхонь.

При створенні системи в ІЧ діапазоні довжин хвиль можливо застосовувати загальну структурну схему приладу, рис. 2.

*Температури, тілісні кути та втрати по трасі поширення*. За виразом (1) знаходимо з рівняння [18]:

$$T_{\rm np} = T_0 \left( K_{\rm m} - 1 \right), \tag{2}$$

де К<sub>ш</sub> – коефіцієнт шуму радіоприймального пристрою радіометра; *T*<sub>0</sub> – температура середовища, яке оточує кореляційний радіометр.

Температура (1) для кожного з двох каналів прийому при картографуванні поверхонь [6, 13]:

$$T_{a} = (1-\beta)\eta \left[ T_{aTM} + T_{3}(1-\delta) + \sum_{i=1}^{n} t_{i}\delta_{i} + T\delta \right] + \beta\eta \left( T_{aTM} + T_{3} + \sum_{j=1}^{k} t_{j}\delta_{j} \right) + (1-\eta)T_{0}.$$
 (3)

Перша складова (3) надає антенну температуру прийняту у тілесному куті головної пелюстки діаграми спрямованості (ДС) антени радіометра  $\Omega_{rn}$ . Друга складова – зовні  $\Omega_{rn}$ , а третя складова характеризує особисті шуми антен радіометра. Причому:  $\beta$  – коефіцієнт враховує частку ненаправленого випромінювання, яке приймається антеною зовні  $\Omega_{rn}$ ;

 $\eta$ -коефіцієнти корисної дії антен;  $T_{aтм}, T_3, T$ -відповідно шумові (радіояскраві) температури атмосфери, землі та МО картографування;  $t_i, t_j$ -відповідно шумові температури поверхонь, що заважають прийому корисних сигналів, які знаходяться у головній та бокових пелюстках ДС антен; i = 1, 2...n та j = 1, 2...k;

$$\delta = \Omega_{\rm MO} / \Omega_{\rm FJI} , \qquad (4)$$

де  $\Omega_{MO}$  – тілесний кут зайнятий МО [1,13];  $\delta_i, \delta_j$  – теж саме що і  $\delta$ , але для сигналів, які заважають прийому коливань МО, причому:

$$\Omega_{\rm OII} = S/R^2, \quad \Omega_{\rm FII} = 4\pi\eta/G, \qquad (5)$$

де S-площина MO; R-дальність до нього; G- коефіцієнти підсилювання антен [17,20]

$$G = \left(3, 2 \cdot 10^4 L_1 L_2\right) / \left[\lambda (180/\pi)\right]^2,$$
(6)

де  $L_1, L_2$  – розміри антен у горизонтальній та вертикальній площинах відповідно;  $\lambda$  – центральна довжина хвилі РМС.

Якщо однакових розмірів антен у системі  $L_i$  з виразів (4), (5) отримуємо:

$$\delta = \left( SG \right) / \left( 4\pi \eta R^2 \right). \tag{7}$$

Температура атмосферного випромінювання, яка спостерігається при зенітному куті ф [1, 13, 16]:

$$T_{\rm atm}(\phi) = (T_0 - 30) \left[ 1 - L(\phi)^{-1} \right], \tag{8}$$

де  $L(\phi)$ -повне поглинання (загасання) в атмосфері (сумарні втрати по трасі поширення радіометричних (РМ) сигналів).

При використання моделі [1, 16] і середніх відстаней R (<8км) вираз для сумарних втрат по трасі поширення має вигляд

$$L(\phi) \approx \exp\left[0,23BR\left(\cos\phi\right)^{-1}\right],\tag{9}$$

де В – коефіцієнт поглинання РМ сигналів при наявності в атмосфері кисню, пари води, пилу.

У виразах (8) та (9) використовується модель плоскої поверхні картографування, яка покрита однорідним шаром атмосфери. Для визначення коефіцієнтів В використовуємо підходи, які приведені у [1, 14]. При ясній погоді враховано лише поглинання кисню і водяних парів у стандартних умовах. Щільність водяних парів, при цьому, дорівнює 7,5 гр/м<sup>3</sup>. Також визначені значення В при дощу середньої сили – 4 мм/годину. Значення коефіцієнтів В для довжини хвилі ~3,4 мм, коли ясно та дощ середньої сили відповідно дорівнюють 1,0442 і 1,9444 разів/км. Результати розрахунку за виразом (9), при зміні *R* від 1,5 до 5,5 км приведені на рис. 3. Криві  $T_{aтм}1(\phi)$  та  $T_{aтм}2(\phi)$  відповідно відображають значення температур атмосфери якщо ясно, або дощ. Перша крива  $T_{aтm}1(\phi,1.5)$  безперервна та друга  $T_{aтm}2(\phi,1.5)$  (позначена точками) надають значення температур, коли *R* дорівнює 1,5 км. Криві  $T_{aтm}1(\phi,3.5)$ (тире) та  $T_{aтm}2(\phi,3.5)$  (точки тире) побудовані при *R* у 3,5 км. На рис. 3 п'ята (×××) і шоста (000) криві здобуті коли *R* – 5,5 км.



Рис. 3. Температура атмосферного випромінювання  $T_{\text{атм }i}(\phi)$ , яка спостерігається при зенітному куті  $\phi$  та зміні дальності Rвід 1,5 до 5,5 км

Температура  $T_3$  обрана на основі експериментальних даних радіояскравих температур [16] для сухого піску (гравію) ~ 252 *К*. При цьому  $\phi \le 30^\circ$ .

Радіояскрава температура МО *T* залежить від її випромінювальної здатності  $\chi$ , кута  $\phi$  та термодинамічної температури  $T_{\rm T}$ , так  $T(\phi) = \chi(\phi)T_{\rm T}$  [1, 16]. Для шершавих поверхонь значення  $\chi(\phi \le 30^\circ)$  змінюється у межах від ~0,91 до ~0,88, для гладкого вологого ґрунту ~0,67. При знаходженні автомобіля на однорідній поверхні [16], коли  $\chi(\phi \le 30^\circ)$  дорівнює ~0,72 [13].

Для виявлення МО гладкого вологого грунту приймаємо *T* у 194 *К*.

Радіояскраві випромінювання завад  $T_{\phi}$ (фону, що корельований та власних шумів приймальних каналів) при відсутності сигналу МО на вході системи визначається виразом

$$T_{\phi} = (1 - \beta) \eta \left[ T_{\text{atm}} + T_3 (1 - \delta) + \sum_{i=1}^{n} t_i \delta_i \right] + \beta \eta \left( T_{\text{atm}} + T_3 + \sum_{j=1}^{k} t_j \delta_j \right) + (1 - \eta) T_0.$$
(10)

Відношення сигнал-завада та дальність дії системи. Якщо у РМС однакові антени та канали прийому то відношення сигнал-завада  $\gamma_i$  (*i* = 1, 2) у кожному з каналів дорівнює [14, 13]:

$$\gamma_i = P_{ci} / P_{\phi i} = \left( P_{ai} - P_{\phi i} \right) / P_{\phi i} , \qquad (11)$$

де  $P_{ai}$ ,  $P_{\phi i}$  – відповідно потужність сигналів на вході РМС при наявності та відсутності сигналу від МО, так [18, 23]:

$$P_{ai} = k T_0 \Pi_{BX} \left( K_{III} - 1 + \frac{T_{ai}}{T_0} \right)$$
  

$$P_{\phi i} = k T_0 \Pi_{BX} \left( K_{III} - 1 + \frac{T_{\phi i}}{T_0} \right),$$
(12)

де *k* – постійна Больцмана.

Якщо технічні параметри ( $T_0$ ,  $K_{\rm III}$ ,  $\beta$ ,  $\eta$ , G...) кожного з каналів однакові та провівши ряд математичних перетворень з формул (2) – (7), (10) – (12) здобули  $\gamma$  для одного з каналу прийому РМС:

$$\gamma = \frac{\left(1-\beta\right)SG\left|T-T_{3}\right|}{4\pi\alpha R^{2}L\left[T_{0}\left(K_{\mathrm{III}}-\eta\right)+A\right]},$$
(13)

ISSN 0485-8972 Радиотехника. 2017. Вып. 191

де *L* – втрати в РМС та

$$A = \eta \left[ T_{\text{aTM}} + T_3 + (1 - \beta) \sum_{i=1}^n t_i \,\delta_i + \beta \sum_{j=1}^k t_j \delta_j \right].$$
(14)

Після кореляційного стискання, тобто оцінювання ВКФ в РМС, відношення сигнал-шум v на виході системи визначається з виразу [14, 6, 13]:

$$v = \frac{\Pi_{\rm BX} \tau_{\rm H} \rho^2}{1 + \rho^2}, \qquad (15)$$

де  $\tau_{\rm H}$  – час накопичення у кореляційному радіометрі;  $\rho$  – коефіцієнт кореляції вхідних коливань, при  $\gamma_1 = \gamma_2$ 

$$\rho = \gamma / (1 + \gamma). \tag{16}$$

Якщо v = 5,64 рази (15) то імовірність вірного виявлення МО на поверхні картографування  $P_{\rm B}$  дорівнює 0,5 при фіксованому рівні помилкової тривоги  $F - 10^{-2}$  [14,6]:

$$P_{\rm B} = F^{\left(1+\nu\right)^{-1}}$$

Використовуємо вирази (15) та (16), при умові що дальність до МО суттєво більше відстані між антенами кореляційного радіометра Б (рис. 1), у визначаємо з рівняння:

$$\gamma = \left[ \nu + \sqrt{\nu (K_{\rm cT} - \nu)} \right] / (K_{\rm cT} - 2\nu), \qquad (17)$$

де  $K_{\rm ct}$  – коефіцієнт кореляційного стискання, причому  $K_{\rm ct} = \Pi_{\rm BX} \tau_{\rm H}$ .

Враховуючи (17) з виразу (13) отримали рівняння дальності дії рознесеної двохпозиційної РМС:

$$R = \sqrt{\frac{\left|T - T_3\right| S G \left(1 - \beta\right)}{4 \pi \alpha \gamma L \left[T_0 \left(K_{\rm III} - \eta\right) + A\right]}},$$
(18)

Відношення сигнал-шум на виході RC інтегратора [21] дорівнює:

$$v = \frac{1}{2} \left( \frac{m}{\sigma} \right)^2 = \frac{1}{2} \left[ \frac{1 - \exp\left(-\Pi_{\text{BHX}} t/3\right)}{\sqrt{1 - \exp\left(-2\Pi_{\text{BHX}} t/3\right)}} \right]^2,$$
(19)

де  $m, \sigma$ -відповідно середнє значення та середньоквадратичне відхилення на виході інтегратора; t – час інтегрування кореляційного радіометра.

Для забезпечення найбільшої смуги картографування (строчка, яка перпендикулярна  $\vec{V}$  на рис. 1) обмежили значення  $\tau_{\rm H}$  (15) на рівні  $\tau_{\rm H} = 3/\Pi_{\rm Bux}$ . При цьому  $m \neq 1$  (19) та втрати у величині v дорівнюють  $(1/0,9514)^2 \approx 1,105$  рази. Тоді отримуємо  $v = 5,64 \cdot 1,105 \approx 6,23$  рази.

На рис. 4 представлені результати розрахунку за виразом (18) при наступних типових технічних характеристиках [13, 15 – 18]: T = 194K;  $T_3 = 252K$ ;  $T_{\text{атм}} = 209K$ ;  $T_0 = 290K$ ;  $\beta = 0,31$ ; L = 2;  $K_{\text{III}} = 2,7$ ;  $\eta = 0,78$ ;  $\lambda = 3,4 \cdot 10^{-3}$  м;  $L_1 = L_2 = 90\lambda$ ;  $\Pi_{\text{BX}} = 6 \cdot 10^9$  ГГц;  $\Pi_{\text{BUX}} = 310$  Гц;  $\nu = 6,23$ ;  $F = 10^{-2}$ ;  $P_{\text{B}} = 0,5$ ;  $t_i \approx t_j \approx 0$ , тобто картографування ведеться на

протяжній однорідній поверхні; S – змінюється в межах від 2 до  $10^3 \text{ м}^2$ ; значення  $T_3$  це радіояскрава температурі піску (або гравію), коли  $\phi < 30^\circ$ .





Перша крива  $R(10^2, T)$  на рис. 4 безперервна, відображає значення дальності дії РМС при зміні T (105-348 K), коли  $S = = 10^2 \text{ м}^2$ . Так, наприклад  $R(10^2, 194) \approx \approx 5442 \text{ м}$ . При цьому під носієм на зображенні є  $N_{\tau}$  різниць ходу через 0,5 ВКФ ( $N_{\tau} \approx 6,3$ ) та відстань між різницями ходу  $\Delta_{\tau} \approx 27, 2 \text{ м}$ . Якщо  $T \approx T_3$  то  $R_i$  прямує до нуля, так як відсутній радіояскравий контраст на поверхні зображення.

Смуга картографування  $\Pi_{\rm k}$  визначаємо приблизно, при умові, що сканування антенною системою ведеться через напівширин її ДС  $\Theta_{0.5}$ , так:

$$\Pi_{\rm K} \approx \frac{2 \left[ R_i(S,T) \operatorname{tg}(\Theta_{0,5}/2) \right]^2}{V \tau_{\rm H}}, \qquad (20)$$

де V – швидкість польоту носія (125 м/с); причому  $\Theta_{0,5} = \sqrt{2} \lambda / L_i$ .

Коли  $R(10^2, 194)$  отримали  $\Pi_{\kappa} \approx 3020 \,\mathrm{m}.$ 

При виявленні вологого ґрунту на фоні піску (гравію) величини R(S,194) (четверта крива, точки тире на рис. 4) надає значення  $R_i$ , якщо перемінна S.

Доплерівська поправка частоти сигналу МО *F*<sub>д</sub> при двохпозиційній системі прийому та фіксованій висоти її прольоту дорівнює [2, 3, 10]:

$$F_{\rm A} = \frac{2V}{\lambda} \sin\varepsilon \sin\left(\frac{\xi}{2}\right),\tag{21}$$

де V – різниця швидкості між носієм (рис. 1) та МО на поверхні картографування;  $\varepsilon$  – кут між лінією МО – середина бази та вектором  $\vec{V}$ ;  $\xi$  – кут, який створений першим пунктом прийому ПІ – МО – другим пунктом прийому ПІІ.

Якщо на кожному відведенні РМС (рис. 2) після квадратичних детекторів (квадраторів) встановлені, наприклад, 10 (*N*) фільтрів то  $\Pi_{\text{вих}}$  дорівнює 31 Гц. За рахунок недостатньої величини *t* (19) втрати в v дорівнюють ~6,72 рази. Тобто у виразах (17), (18) нове значення v, так v = 5,64 · 6,72 ≈ 37,89 рази.

Зміну величин v у РМС, при звуженні  $\Pi_{\text{вих}}$ , позначимо через  $B_i$ , яке знаходимо з виразу

$$B_i = \nu \left( \Pi_{\rm BHX} \right) / \nu \left( \Pi_{\rm BHX} / N \right), \tag{22}$$

ISSN 0485-8972 Радиотехника. 2017. Вып. 191

де *N* – кількість фільтрів Доплера на виході кожного з квадратичних детекторів (рис. 2).

Результати розрахунку за останнім виразом наведено на рис. 5. Нижня крива відображає зміну  $B_i(t)$ , коли N = 10 та  $\Pi_{\text{вих}}$  зменшується з 310 до 31 Гц, при цьому  $t < 3/\Pi_{\text{вих}}$   $(t < \tau_{\text{н}})$ .



Рис. 5. Зміна співвідношення  $B_i(t)$  за час інтегрування у радіометрі t, при звуженні смуги пропускання його вихідного фільтра  $\Pi_{\text{вих}}$ 

Верхня крива на рис. 5 – N = 50,  $\Pi_{\text{вих}}$ зменшується з 310 до 6,2 Гц. Якщо  $t < 10^{-3}$ спостерігаємо на вказаних кривих власні шуми кореляційного радіометра.

Результати розрахунку  $R_i(S,T)$  при вимірі  $F_{\rm д}$  надані другою кривою  $R_1(10^2,T)$ , яка позначена крапками на рис. 4. Дальність дії РМС зменшується ~1,57 рази відносно значення  $R(10^2,194)$ , так отримали  $R_1(10^2,194) \approx 3464$  м. При цьому  $\Pi_{\rm K} \approx 1230$  м,  $N_{\rm T} \approx 6,3$  та  $\Delta_r \approx 17,3$  м.

При встановленні 50 (N) фільтрів на виході кожного з квадратичних детекторів (рис. 2) отримуємо:  $\Pi_{\text{вих}} = 6,2 \ \Gamma$ ц,  $R_3 (10^2, 194) \approx 2320 \text{ м}, \ N_{\tau} \approx 6,3, \ \Pi_{\text{к}} \approx 550 \text{ м}$  та  $\Delta_r \approx 11,6 \text{ м}$ .

У РМС бажано мати прямокутний амплітудо-частотний спектр, тоді тіло невизначеності (ТН) на її виході  $(\sin x/x)^2$  [8, 9]. Якщо значення  $F_{\pi}$  у (21), наприклад, ~46 Гц, то рівень фону ТН, що заважає картографуванню, зменшується ~ -13 дБ. При збільшенні величини  $F_{\pi}$  ~170 Гц, рівень фону ТН знижується до ~ -25 дБ. Вказане зменшення корельованого фону ТН, що заважає картографуванню, враховується множення (14) на 10<sup>-1,3</sup> (10<sup>-2,5</sup>) разів.

Третя крива  $R_2(10^2, T)$  на рис. 4 позначена тире, відображає зміну значень відстані картографування, коли  $F_{\pi} \sim 46$  Гц. Відносно  $R_1(10^2, T)$  дальність збільшується, так  $R_2(10^2, 194) \approx 4378$ м. П'ята крива  $R_2(S, 194)$  (000, рис. 4) також здобута якщо  $F_{\pi} \sim 46$  Гц. Відмічаємо, що крива R(S, 194) проходить вище  $R_2(S, 194)$ . Втрати у дальності при виміру  $F_{\pi}$  дорівнюють  $R(10^2, T)/R_2(10^2, T) \approx 1,24$  рази.

Картографування земної поверхні в IV діапазоні довжин хвиль (3,3 - 4,2 мкм) при Б = 20 м,  $R \sim 5,5$  км надає  $\Delta_r \approx 9 \cdot 10^{-3}$  м.

Картографування космічних об'єктів. Якщо проводиться картографування космічних об'єктів з надземної орбіти, записи рівнянь  $T_a$  (3) та  $T_{\phi}(10)$  декілька змінюються:

$$T_{a} = (1 - \beta_{1})\eta \left( T_{\kappa} + T\delta + \sum_{i=1}^{n} t_{i} \delta_{i} \right) + \beta_{2}\eta \left( T_{aTM} + T_{3} + \sum_{j=1}^{k} t_{j} \delta_{j} \right) + (1 - \eta)T_{c},$$

$$T_{\phi} = (1 - \beta_{1})\eta \left( T_{\kappa} + \sum_{i=1}^{n} t_{i} \delta_{i} \right) + \beta_{2}\eta \left( T_{aTM} + T_{3} + \sum_{j=1}^{k} t_{j} \delta_{j} \right) + (1 - \eta)T_{c}.$$
(23)

ISSN 0485-8972 Радиотехника. 2017. Вып. 191

де  $\beta_1$ ,  $\beta_2$  – відповідно частка ненаправленого випромінювання, які приймаються антеною радіометра у передній та задній напівсферах;  $T_{\kappa}$ ,  $T_{c}$  – радіояскраві температури космосу та середи, що оточує антени відповідно.

Нове значення у здобули перетворюючі вирази (11), (12) з врахуванням (2) – (7), так

$$\gamma = \frac{(1 - \beta_1) S G T}{4 \pi \alpha R^2 L [T_c (K_{\rm III} - \eta) + \mu (K_{\rm III} - 1) + A_1]},$$
(24)

де  $\mu$ -різниця між значеннями  $T_0$  та  $T_c$ ;

$$A_{\mathrm{I}} = \eta \left[ \left(1 - \beta_{\mathrm{I}}\right) \left(T_{\mathrm{K}} + \sum_{i=1}^{n} t_{i} \,\delta_{i}\right) + \beta_{2} \left(T_{\mathrm{aTM}} + T_{3} + \sum_{j=1}^{k} t_{j} \delta_{j}\right) \right]$$

У підсумку отримуємо замість (18) варіант рівняння дальності спостереження за космічними об'єктами з надземної орбіти

$$R = \sqrt{\frac{T S G (1 - \beta_1)}{4 \pi \alpha \gamma L \left[ T_c \left( K_{III} - \eta \right) + \mu \left( K_{III} - 1 \right) + A_1 \right]}}$$
(25)

Якщо є різниця між швидкостями надземного носія та космічного об'єкта картографування (21) величина  $A_1$  в (25) зменшується відповідно  $F_{\mu}$  та TH фону, що корельовано.

Перспективним є побудова рознесених радіометричних систем при дослідженні космічних об'єктів в диапазонах від дециметрових до ІЧ довжин хвиль.

#### Висновки

Запропоновано підвищення чутливості та розрізнювальної здатності за різницею ходу за рахунок впровадження у кореляційний радіометр (рис. 2) відповідних модуляторів вхідних сигналів та квадратичних детекторів. Отримано рівняння дальності дії рознесеної двохпозиційної РМС з врахуванням радіояскравих температур атмосфери та поверхонь, що заважають. При типових технічних характеристиках РМС та виявленні вологого ґрунту з температурою T (~194K) площиною S (10<sup>2</sup>) на однорідному фоні (~252K) отримали дальність дії  $R_i \sim 5,4$  км. При цьому смуга картографування  $\Pi_{\rm K} \sim 3$  км, у кожному пікселі зображення різниць ходу  $N_{\tau} \sim 6$ , а відстань між нами на поверхні  $\Delta_r \sim 27$  м. Вимірювання доплерівської поправки частоти  $F_{\rm A}$  при 10 вихідних фільтрах зменшує  $R_i$  до ~3,5 км і встановлює  $\Pi_{\rm K} \sim 1,2$  км,  $\Delta_r \sim 17$  м та  $N_{\tau} \sim 6$ . Останні значення визначені за умови, що  $F_{\rm A}$  об'єкта співпадає з головною пелюсткою TH фону, що корельовано. При зростанні  $F_{\rm A}$  у 1,5 рази рівень фону, що заважає, зменшується у ~ -13 дБ і  $R_i$  збільшується ~1,26 рази, так:  $R_i \sim 4,4$  км,  $\Pi_{\rm K} \sim 2$  км,  $\Delta_r \sim 22$  м.

Запропоновано варіант визначення дальності дії рознесеної двохпозиційної РМС для картографування космічних об'єктів з надземної орбіти. Вказано на збільшення  $R_i$  при вимірі  $F_{\rm A}$ , за рахунок зниження фону, що корельовано.

Список литератури : 1. *Теоретические* основы радиолокации / А.А. Коростелев, Н.Ф. Клюев, Ю.А. Мельник и др. ; под ред. В.Е. Дулевича. – 2-е изд. перераб. и доп. – М. : Сов. радио, 1978. – 608с. 2. *Алмазов В.Б.* Методы пассивной радиолокации. – Харьков : ВИРТА, 1974. – 86с. 3. *Караваев В.В., Сазонов В.В.* Статистическая теория пассивных радиолокационных систем. – М. : Радио и связь, 1987. – 240с. 4. *Биков В.Н.* Виявлення малорозмірних об'єктів радіометричною інформаційною системою мм діапазону з шумовою підсвіткою / Биков В.Н. // Радіоелектронні і комп'ютерні системи 2(10). –Харків : ХАІ. – 2005. – С. 5-11. 5. *Калинкин С.И., Кудряшов В.Е.*,

Хоменко Е.В. Выбор параметров многоканальной радиометрической системы обнаружения малоразмерных неоднородностей // Радиотехника. – 1992. – №10-11. – С. 3-7. 6. Коломійцев О.В., Клеваний Ю.А., Мельников І.В. Дальність радіотеплолокаційного спостереження двохпозиційною радіометричною системою повітряних цілей // Системи обробки інформації. - Харків : ХУПС, 2014. - Вип. 2(118). - С. 21 - 24. 7. Lukin K.A., Kudriashov V.V., Vyplavin P.L., Palamarchuk V.P. Coherent imaging in the range-azimuth plane using a bistatic radiometer based on antennas with beam synthesizing // IEEE Aerospace and Electronic Systems Magazine, 29, 7, pp. 16 - 22. 8. Lukin K.A., Kudriashov V.V., Vyplavin P.L., Palamarchuk V.P., Lukin S.K. Coherent radiometric imaging using antennas with beam synthesizing // International Journal of Microwave and Wireless Technologies, 7, Spec. Iss. 3-4, pp. 453 – 458. 9. Kudryashov V.V., Lukin K.A. Palamarchuk V.P. Vyplavin P.L. Coherent radiometric imaging with a Ka-band ground-based synthetic aperture noise radar // Telecommunications and Radio Engineering. - 2013. - Vol. 72, No. 8. - p. 699-710. 10. Kudriashov V.V. 'A Modified Maximum Likelihood Method for Estimation of Mutual Delay and Power of Noise Signals by Bistatic Radiometer'. Comptes Rendus - Academie Bulgarie des Sciences, 68, 5, pp. 631 - 640. 11. Qingxia Li, Ke Chen, Wei Guo, Liang Lang, Fangmin He, Liangbing Chen. An Aperture Synthesis Radiometer at Millimeter Wave Band // Microwave and Millimeter Wave Technology, 2008. ICMMT 2008. Vol. : 4, pp. 1699 - 1701. 12. Ji Wu, Hao Liu, Shouzheng Ban, Xiaolong Dong, and Jingshan Jiang. Research Activity on Synthetic Aperture Radiometry in CSSAR/CAS // Progress In Electromagnetics Research Symposium 2005. PIERS Vol. :1, No : 5, pp : 538-542. 13. Дальність радіотеплолокаційного спостереження кореляційним виявлячем сигналів малорозмірних об'єктів на поверхні землі / Коломійцев О.В., Кудряшов В.В. // V наук. конф. ХУПС ім. І.Кожедуба «Новітні технології – для захисту повітряного простору» : наук.-техн. конф., 28-29 бер. 2009 р. : тези доп. – Харків : ХУПС, 2009. – С. 217. 14. Теоретические основы радиолокации ; под ред. Я.Д. Ширмана. – М.: Сов. радио, 1970. – 560с. 15. Институт электроники и связи АН Украины, 2017. – Ел. Доступ http://www.mitris.com/files/Osnovnye napravleniya razrabotok.pdf. 16. Справочник по радиолокации ; под ред. М. Сколника. Т. 4. Радиолокационные станции и системы ; под ред. М.М. Вейсбена. – М. : Сов. радио, 1978. – 376с. 17. Справочник по радиолокации ; под ред. М. Сколника. Т. 2. Радиолокационные антенные устройства ; под ред. П.И. Дудника. – М. : Сов. радио, 1977. – 408с. 18. Радиоприемные устройства / Ю.Т. Давыдов, Ю.С. Даничь, и др. ; под ред. А.П. Жуковского. – М. : Высш. шк., 1989. – 388с. 19. Регламент радиосвязи. Статьи. – Женева : Швейцария, 2016. – 441 с. 20. Шевченко А.Ф. Результати порівняльного аналізу характеристик спрямованості кільцевих фазованих антенних решіток для завдань створення багатопозиційних активно-пасивних РЛС // Системи обробки інформації. – Харків : ХУПС. – 2014. – Вип. №9(125). – С. 65–72. 21. Статистическая радиотехника / Т.В. Горяинов, А.Г. Журавлев, В.И. Тихонов ; под ред. В.И. Тихонова. – М. : Сов. радио, 1980. – 544с. 22. Алмазов В.Б., Манжос В.М., Камчатний Н.И. Упрощенный алгоритм обнаружения шумового сигнала в двухпозиционной системе пассивной локации // Известия высших учебных заведений. Радиоэлектроника. – 1987. – Т. 30. № 11. – С.20–24. 23. Леонов І.Л., Присяжний А.Е., Сидоренко Д.С. Визначення робочих характеристик приймальних пристроїв шляхом моделювання на ПЄОМ // Системи обробки інформації. - Харків : ХУПС. - 2014. - Вип. №1(117). -C. 30-32.

Харківський національний університет повітряних сил імені Івана Кожедуба

Надійшла до редколегії 15.10. 2017