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Abstract. The enormous growth in the size of data has been observed in re-
cent years being a key factor of the Big Data scenario. Big Data require a 
new high-performance processing. The use of big data preprocessing meth-
ods for data mining in big data is reviewed in this paper. The definition, at-
tributes and categorization of data preprocessing approaches in big data are 
introduced. The relation between big data and data preprocessing through-
out all families of methods and advanced data technologies are likewise 
analyzed. Furthermore, research challenges are discussed, while concentrat-
ing on improvements in certain families of data preprocessing methods and 
applications based on new big data learning paradigms. 
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INTRODUCTION 

Vast amounts of raw data are encompassing us in our world, information that 
can’t be directly treated by humans or manual applications. Technologies as the 
Internet, engineering and science applications and networks, business services and 
much more create data in exponential development because of the development of 
powerful storage and connection tools. Organized knowledge and information 
can’t be easily obtained because of this enormous data growth and neither one of 
its can be effectively understood or automatically extracted. These premises have 
prompted to the development of data science or data mining, a well-known disci-
pline which is more and more present in the current world of the Information 
Age [1]. 

Nowadays, the current amount of data managed by systems all around the 
globe have surpassed the processing capacity of more traditional systems, and this 
applies to data mining as well. The arising of new technologies and services (like 
Cloud computing [9]) as well as the reduction in hardware price are leading to an 
ever-growing rate of information on the Internet. This phenomenon certainly 
represents a “Big” challenge for the data analytics community. Big Data can be 
thus defined as very high volume, velocity and variety of data that require a new 
high-performance processing [10]. 

Distributed computing has been widely used by data scientists before the ad-
vent of Big Data phenomenon. Many standard and time-consuming algorithms 
were replaced by their distributed versions with the aim of agilizing the learning 
process. However, for most of the current massive problems, a distributed ap-
proach becomes mandatory nowadays since no centralized architecture that is 
able to tackle these huge problems [12]. 
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Nonlinear dimensionality reduction (NLDR) is an attractive topic in many 
scientific fields. The task of NLDR is to recover the latent low-dimensional struc-
tures hidden in high dimensional data. In many areas of artificial intelligence and 
data mining, the encountered high-dimensional data are intrinsically distributed 
on a smooth, low-dimensional manifold [8]. 

The NLDR problem on such data is specifically called “manifold learning” 
problem [13]. In recent years, there have emerged many manifold learning ap-
proaches which are applied to many real-world application problems (e.g., hyper-
spectral imaging classification and object tracking), aiming at discovering the in-
trinsic geometric representations of the nonlinear data manifolds. Based on the 
intrinsic construction principles, these approaches can be divided into two catego-
ries: global and local approaches. Global approaches, such as Isomap and CDA, 
attempt to preserve geometry at both local and global scales, essentially construct-
ing entire isometric corresponding between all datapairs in the original and latent 
spaces [14]. Local approaches, such as LLE and Laplacian eigenmaps, attempt to 
preserve the local geometry of the data, intrinsically keeping invariance between 
all local areas in the original and latent spaces [13]. 

PROBLEM 

Suppose the data consist of N  real-valued vectors iX , each of dimensionality 
D , sampled from some underlying manifold. Provided there is sufficient data 
(such that the manifold is well-sampled), we expect each data point and its 
neighbors to lie on or close to a locally linear patch of the manifold. We charac-
terize the local geometry of these patches by linear coefficients that reconstruct 
each data point from its neighbors. Reconstruction errors are measured by the cost 
function: 
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Which adds up the squared distances between all the data points and their re-
constructions. The weights ijW  summarize the contribution of the jth data point to 

the ith reconstruction. To compute the weights ijW , we minimize the cost func-

tion subject to two constraints: first, that each data point iX  is reconstructed only 

from its neighbors, enforcing 0ijW , if jX  does not belong to the set of 

neighbors of iX ;second, that the rows of the weight matrix sum to one: 
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Suppose the data lie on or near a smooth nonlinear manifold of lower dimen-
sionality Dd  .To a good approximation then, there exists a linear mapping-
consisting of a translation, rotation, and rescaling-that maps the high-dimensional 
coordinates of each neighborhood to global internal coordinates on the manifold. 
By design, the reconstruction weights ijW  reflect intrinsic geometric properties of 

the data that are invariant to exactly such transformations. We therefore expect 
their characterization of local geometry in the original data space to be equally 
valid for local patches on the manifold. In particular, the same weights ijW  that 
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reconstruct the ith data point in D dimensions should also reconstruct its embed-
ded manifold coordinates in d dimensions. 

DISTANCE PRESERVATION  

This part discusses methods that reduce the dimensionality of data using the dis-
tance preservation criterion. Ideally, saving the pairwise distances measured in the 
dataset ensures that the low-dimensional nesting inherits the basic geometric 
properties of the data, such as the global shape or local neighborhood relations. 
Unfortunately, in the nonlinear case the distances cannot be completely preserved. 
We will discuss various methods that try to overcome this difficulty. These meth-
ods use different types of distances; they also rely on various algorithms or opti-
mization procedures to determine the nesting [15]. 

Multidimensional scaling 

The term multidimensional scaling (MDS) actually hides a family of methods, 
rather than one clearly defined procedure. Scaling refers to methods that build a 
configuration of points in the target metric space from information about interme-
diate distances, and MDS scales when the target space is Euclidean [7]. 

The optimization method is exact and purely algebraic: the optimal solution 
is obtained in a closed form. Metric MDS is also called the spectral method, since 
the kernel operation in its procedure is the EVD of the Gram matrix. The model is 
continuous and strictly linear. The mapping is implicit.  

MDS is simple, durable, but strictly linear. But the metric MDS is flexible: it 
takes coordinates, as well as scalar products or Euclidean distances. On the other 
hand, the MDS metric requires memory to store the N-by-N Gram matrix. An-
other limitation is the generalization to new data points, which includes an ap-
proximate formula for the double centering phase [16]. 

Sammon’s nonlinear mapping 

In 1969, Sammon proposed a method for establishing a mapping between a high-
order space and a lower one. The model is nonlinear and discrete, creating an ex-
plicit mapping [6]. 

NLM Sammon uses an approximate optimization procedure that can get 
stuck at a local minimum. The method does not include an estimate of its own 
dimension; the dimension size is actually fixed by the user. Incremental or layered 
attachments are not possible: the method must be run separately for each given 
dimension [11]. 

Compared to the classical MDS metric, NLM can efficiently handle nonlin-
ear varieties, at least if they are not too complex. Among other non-linear versions 
of the metric MDS, the NLM remains relatively simple and elegant. As a major 
drawback, NLM does not have the ability to generalize mapping to new points. 

Just like many other methods of preserving distance, NLM in its original 

version works with a full distance matrix, therefore, contains )( 2NO  records. 

This can be an obstacle when embedding very large data sets. Another drawback 
of NLM is its optimization procedure, which can be slow and/or inefficient for 
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some data sets. In particular, the function of the stress of Sammon is not guaran-
teed concave; therefore, the optimization process may depend on the local mini-
mum.  

Graph distances. In short, these methods try to overcome some of the short-
comings of spatial metrics, such as Euclidean distance. The next subsection pre-
sents both geodetic and graphical distances, explains how they relate to one an-
other, and motivates their use in the context of diminishing dimensionality. The 
following subsections describe methods for reducing the non-linear dimension, 
which use graph distances. 

Isomap 

Isomap is the simplest method of NLDR, which uses the distance of the graph as 
an approximation of the geodetic distance. Isomap is an autonomous batch 
method that works with precise algebraic optimization. Since Isomap operates as 
a metric MDS, decomposing the Gram matrix into eigenvalues and eigenvectors 
is often qualified as a spectral method. In the literature, Isomap is described with-
out preliminary processing of data, such as vector quantization [5]. The isomap 
relies on a nonlinear model. In fact, if the Euclidean distance can be considered as 
a "linear" metric, then the Isomap's ability to embed nonlinear varieties arises 
only because of the use of the distance of the graph [17]; Other parts of the 
method, such as the basic model of the optimization procedure, are based on the 
classical metric MDS and remain purely linear. Therefore, the Isomap data model 
is hybrid: the geodetic distance approximation along the face distances is discrete, 
whereas the subsequent MDS-like step can be considered continuous [18]. 

Isomap extends metric MDS in a very elegant way. However, the data model 
of Isomap, which relies on developable manifolds, still remains too rigid. Indeed, 
when the manifold to be embedded is not developable, Isomap yields disappoint-
ing results. In this case, the guarantee of determining a global error does not really 
matter. 

Another problem encountered when running Isomap is the practical compu-
tation of the geodesic distances. The approximations given by the graph distances 
may be very rough, and their quality depends on both the data (number of points, 
noise) and the method parameters. 

TOPOLOGY PRESERVATION 

This part discusses methods that reduce dimensionality while preserving the data 
topology, rather than their pairwise distances. Preservation of topology seems 
more powerful, but more difficult to implement than keeping distance. The meth-
ods described are divided into two classes, depending on the type of topology 
used. The simplest methods are based on a predefined topology, whereas more 
modern methods prefer a topology built in accordance with a set of data that will 
be re-embedded. 

Self-Organizing Maps 

Along with multilayer perceptron (MLP), the self-organizing map is perhaps the 
most widely known method in the field of artificial neural networks. The SOM is 
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basically a vector quantization method. This means that vector quantization is 
mandatory in the SOM. As for the reduction in dimension, SOM models the data 
in a nonlinear and discrete way, representing it with a deformed lattice [4].  

SOM is a neural network with learning without a teacher, performing the 
tasks of visualization and clustering. The idea of the network was proposed by the 
Finnish scientist T. Kohonen.  

Most of the time, SOMs are implemented by standalone algorithms, similar 
to the Robbins-Monro procedure. Online versions can be easily obtained. There is 
a so-called "batch" version of SOM: instead of updating the prototypes, one after 
another, they all move simultaneously at the end of each epoch, as in the standard 
gradient descents [19]. 

The wide success of the SOM can be explained by the following advantages. 
The method is very simple from an algorithmic point of view, and its main idea, 
once understood, is intuitively attractive. Zombies are reliable enough and work 
very well in many situations, such as visualization of tagged data. 

Nevertheless, the SOM have some known shortcomings, especially when 
they are used to reduce the dimension. Most implementations process only one or 
two-dimensional lattices. Vector quantization is mandatory, which means that the 
SOM does not really embed data points: base coordinates are calculated only for 
prototypes. Moreover, the form of the embedding is identical to the lattice, which, 
in turn, is determined in advance, arbitrarily. This means that the SOM cannot 
capture the shape of the data cloud in a low-dimensional attachment. From a 
computational point of view, it is very difficult to assess the convergence of the 
SOM, since an explicit objective function or an error criterion has been optimized 
[20]. In fact, it is proved that such a criterion cannot be determined, with the ex-
ception of some very special cases. 

Generative Topographic Mapping 

The generic topographic mapping (GTM) was put forward by Bishop, Swensen 
and Williams as a fundamental alternative to the SOM. In fact, GTM is a specific 
density network based on generative modeling, as indicated by its name. [3] 

The essential difference between GTM and almost all the other methods is 
that the GTM is based on the Bayesian learning principle [21]. This probabilistic 
approach leads to another optimization method: instead of using (stochastic) gra-
dient descent or spectral decomposition, the EM algorithm is used. As described 
above, GTM is a batch method, but there is also a version that works with the sto-
chastic EM procedure. Since GTM defines the parameters of the generating 
model of the data, the diminution of the dimension is easily generalized to new 
points. Therefore, we can say that GTM defines an implicit mapping, although the 
hidden space is discrete. 

If the implementation does not impose a two-dimensional grid, an external 
procedure is needed to evaluate the internal dimension of the data to determine 
the correct measurement for the hidden space. 

Compared to SOM, GTM provides a generative data model. Moreover, the 
probabilistic approach that has come has a number of advantages. First, apart 
from finding the hidden coordinates x of the point y, GTM can also approximate p 



Stanislav Zabielin 

ISSN 1681–6048 System Research & Information Technologies, 2018, № 2 40

(x | y), that is, the probability that the attachment will be located in x coordinates 
in a hidden space. This allows us to identify problems in diminishing dimension-
ality when, for example, the probability distribution is not unimodal [3]. 

Secondly, from an algorithmic point of view, GTM optimizes a clearly de-
fined objective function. GTM optimizes the probability of using the EM algo-
rithm. In comparison with these classical optimization methods, EM is guaranteed 
to maximize the probability monotonically and converge to a maximum after sev-
eral dozen iterations [22]. 

CONCLUSIONS 

Dimension reduction often plays an important role in the analysis, interpretation 
and understanding of numerical data. In practice, reducing the dimension can help 
to extract some information from arrays of numbers that would otherwise remain 
useless because of their large size. To a certain extent, the goal is to improve the 
readability of the data. This can be achieved by visualizing the data in diagrams, 
diagrams, graphs and other graphical representations. 

An important motivation (NL) DR is the prevention of its harmful conse-
quences. Paradoxically, however, many NLDR methods do not completely solve 
the problem, but only shy away from it. Many NLDR methods give poor results 
when the internal dimension of the underlying variety exceeds four or five. In 
such cases, the size of the embedding space becomes high enough to observe un-
desirable effects associated with the curse of dimension, for example, the phe-
nomenon of empty space. The future will show whether new methods can solve 
this problem. 
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