МАТЕРІАЛИ ДЛЯ СЕНСОРІВ

SENSOR MATERIALS

УДК 621.315.592 PACS: 71.55.Gs, 78.30.Fs, 78.40.Fy

ОПТИЧЕСКИЕ СВОЙСТВА ИОНОВ ВАНАДИЯ В КРИСТАЛЛАХ ZnS

Ю.А. Ницук

Одесский национальный университет имени И.И.Мечникова, Одесса, Украина

ОПТИЧЕСКИЕ СВОЙСТВА ИОНОВ ВАНАДИЯ В КРИСТАЛЛАХ ZnS

Ю. А Ницук

Аннотация. Исследованы монокристаллы ZnS:V, полученные методом диффузионного легирования. Исследованы спектры оптической плотности в области энергий 0.4-3.9 эВ. По величине смещения края поглощения определена концентрация ванадия в исследуемых кристаллах. Идентифицирована природа оптических переходов, определяющих оптические свойства монокристаллов ZnS:V в видимой и ИК-области спектра.

Ключевые слова: сульфид цинка, ионы ванадия, внутрицентровые оптические переходы, фотоионизация

ОПТИЧНІ ВЛАСТИВОСТІ ІОНІВ ВАНАДІЮ В КРИСТАЛАХ ZnS

Ю. А. Ніцук

Анотація. Досліджені монокристали ZnS:V, отримані методом дифузійного легування. Спектри оптичної густини досліджувались в області енергій 0.4-3.9 еВ. За величиною зсуву краю поглинання визначена концентрація ванадію в досліджуваних кристалах. Ідентифікована природа оптичних переходів, що визначають властивості кристалів ZnS:V в видимій та IЧобласті спектру.

Ключові слова: сульфід цинку, іони ванадію, внутришньоцентрові оптичні переходи, фотоіонізація

OPTICAL PROPERTIES OF VANADIUM IONS IN ZnS CRYSTALS

Yu. A. Nitsuk

Abstract. ZnS:V single crystals obtained by diffusion doping are investigated. The spectra of optical density in the energy range 0.4-3.9 eV are investigated. On absorption edge shift of investigated crystals the vanadium concentration is calculated. Nature of optical transitions determining optical properties of ZnS:V single crystals in the visible and IR-region of spectrum is identified.

Keywords: zinc sulphide, vanadium ions, intracenter optical transitions, photoionisation

Введение

Кристаллы группы А^пВ^{VI}, легированные ванадием, могут быть использованы в качестве фоторефрактивного материала для систем оптической памяти и обработки информации, пассивных затворов для лазеров, излучающих в ИК-области [1-2]. Основными трудностями на пути создания фоторефрактивных устройств является плохая изученность глубоких уровней ванадия, образующего в запрещенной зоне уровни рекомбинации и захвата [1] и отсутствие достоверных экспериментальных результатов, подтверждающих имеющиеся расчеты энергетических состояний иона ванадия [3-6] в конкретных полупроводниковых матрицах.

В данной работе исследованы спектры оптического поглощения кристаллов сульфида цинка в видимой и инфракрасной областях спектра. По величине смещения края поглощения определена максимальная концентрация примеси ванадия.

Целью данной работы является установление природы оптических переходов в кристаллах ZnS:V, полученных диффузионным легированием.

Методика эксперимента

Исследуемые образцы получены путем диффузионного легирования ванадием исходно чистых монокристаллов ZnS. Нелегированные кристаллы получены методом свободного роста на ориентированной в плоскости (111) подложке монокристаллического ZnS. Подробное описание этого метода выращивания и основные характеристики кристаллов ZnS приведены в [7]. Подбор температурных профилей и конструкции ростовой камеры исключал возможность контакта кристалла с ее стенками. Плотность дислокаций в полученных кристаллах не превышала 10⁴ см⁻².

Легирование кристаллов осуществлялось путем диффузии примеси из металлического слоя ванадия, напыленного на поверхность кристалла. Ванадий напылялся на одну из больших поверхностей кристаллической пластины ($10 \times 5 \times 1$ мм), вырезанной параллельно плоскости (111). Толщина слоя ванадия составляла порядка 10-20 мкм. Отжиг кристаллов осуществлялся в атмосфере He+Ar при температурах от 1220 до 1320 К (см. Таблицу 1). Длительность диффузионного процесса составляла 5 часов.

Спектры оптической плотности измерялись при помощи дифракционного монохроматора МДР-6 с дифракционными решетками 1200, 600 и 325 штр/мм. Первая из решеток использовалась для анализа спектров поглощения в интервале энергий фотонов 3–1.6 эВ, вторая — в интервале 1.55-0.6 эВ, а третья – в интервале 0.6–0.4 эВ. В качестве регистратора светового потока в видимой области спектра использовался фотоумножитель ФЭУ-100, в ИК области использовался фоторезистор ФР-1П, работающий в режиме регистрации по переменному току. Спектры оптической плотности измерялись при температурах T=77и 300 К.

Анализ спектров оптической плотности в видимой области

Спектры оптической плотности нелегированных кристаллов ZnS при при 77 К характеризуются краем поглощения с энергией 3.75 эВ (рис. 1, кривая 1). В области 0.40 - 3.6 эВ никаких особенностей спектров поглощения нелегированных кристаллов не обнаружено.

Легирование кристаллов ванадием приводит к смещению края поглощения в сторону меньших энергий (рис. 1, кривые 2-3). Это смещение увеличивается с ростом температуры отжига. Изменение ширины запрещенной зоны (в мэВ) в зависимости от концентрации вводимых примесей определяется соотношением:

$$\Delta E_g = 2 \cdot 10^5 \left(\frac{3}{\pi}\right)^{1/3} \frac{eN^{1/3}}{4\pi\varepsilon_0\varepsilon_s},\qquad(1)$$

где: *е*-заряд электрона, *N*-концентрация примесей в см⁻³, е В видимой области спектры оптической плотности кристаллов ZnS:V характеризуются серией слабо разрешимых линий (рис. 2). Поглощение света в этой области увеличивается с ростом концентрации ванадия. В спектре поглощения слаболегированных кристаллов ZnS:V, полученных при 1220 К, віделяются двенадцать линий поглощения: 1.64, 1.74, 1.86, 1.92, 2.08, 2.30, 2.37, 2.46, 2.56, 2.75, 2.86 и 2.99 эВ (рис. 2, кривая 1).

№ образца	Тип кристалла	E_g , eV	ΔE_g , meV	N, cm ⁻³
1	ZnS исходный	3.75		
2	ZnS:V, отжиг 1220 К	3.72	30	$6 \cdot 10^{17}$
3	ZnS:V, отжиг 1270 К	3.69	60	$5 \cdot 10^{18}$
4	ZnS:V, отжиг 1320 К	3.67	80	10 ¹⁹

	Таблица 1.	
Оптические характеристики кристациов ZnS·V в области края	поглошения	1

При увеличении степени легирования положение этих линий не изменялось (рис. 2, кривые 2,3). Исследования оптической плотности в температурном диапазоне 77-300 К показало, что положение этих линий не менялось. Таким образом, указанные линии поглощения обусловлены внутрицентровыми переходами. В Таблице 2 приведены энергии оптических переходов в пределах иона V2+ и их идентификация. Эта таблица построена на основе наших экспериментальных результатов и расчетов энергетических состояний иона V²⁺ в ZnSe, выполненных по диаграммам Танабе-Сугано [8]. Для расчетов были использованы параметры кристаллического поля Д=5089 см⁻¹ и $B=510 \text{ см}^{-1}$, $\Delta=5000 \text{ см}^{-1} \text{ и} B=500 \text{ см}^{-1}$ полученные в [9], а также ⊿=3500 см⁻¹ и В=510 см⁻¹[10]. Для сравнения в седьмой и восьмой колонках таблицы приведены результаты расчетов [6] энергетических состояний иона V²⁺ в кристаллической решетке сульфида цинка с учетом взаимодействия с ближайшими лигандами (седьмая колонка) и взаимодействия с большим количеством (кластером) лигандов (3264 иона) (восьмая колонка). Как видно из таблицы, учет ближнего взаимодействия дает лучшие результаты расчетов для высокоэнергетических состояний. В целом, результаты расчетов [6] лучше описывают экспериментальные результаты, чем расчеты по диаграммам Танабе-Сугано.

В кристаллах ZnS:V с концентрацией ванадия $5 \cdot 10^{18}$ см⁻³ при T=77 К выделяется полоса поглощения I_1 на 1.98 эВ (рис. 2, кривая 2). С увеличением концентрации примеси ванадия до 10^{19} см⁻³ данная полоса поглощения смещается в область меньших энергий на 20 мэВ (рис. 2, кривая 3). Величина смещения совпадает с изменением ширины запрещенной зоны в этих кристаллах (Таблица 1). При увеличении температуры от 77 до 300 К I_1 – полоса смещается в область меньших энергий на 120 мэВ (рис.2, вставка). Такое смещение соответствует температурному изменению ширины запрещенной зоны сульфида цинка. Таким образом, полоса поглощения I_1 может быть обусловлена фотоионизацией иона V²⁺:

$$V^{2+} + hv \rightarrow V^{3+} + e_{ch}$$
 (2)

Аналогичные переходы наблюдались нами ранее на кристаллах ZnSe:V, полученными по аналогичной методике легирования. Переходы $V^{2+} \rightarrow V^{3+}$ с энергией 1.92 эВ ранее наблюдались на кристаллах ZnSe:V, полученными в [10].

Исследование оптической плотности в ИК-области

В ИК-области спектры оптической плотности кристаллов ZnS:V характеризуются полосами поглощения на 0.62, 0.88, 0.97, 1.07, 1.19, 1.26, 1.32 и 1.46 эВ (рис. 3). Оптическая плотность кристаллов в этой области возрастала с ростом концентрации ванадия, а положение спектральных полос не менялось с изменением температуры от 77 до 300 К. Согласно расчетам, данные полосы поглощения обусловлены внутрицентровыми переходами из основного состояния ${}^{4}T_{1}(F)$ на состояния термов ${}^{2}G$ и ${}^{4}P$

Рис. 1. Спектры оптической плотности кристаллов ZnS(1) и ZnS:V образцов No2(2), No3(3) и No4(4).

иона V^{2+} (см. Таблица 2).

В спектрах оптической плотности сильнолегированных кристаллов в области 1.39 - 1.34 эВ выделяется полоса поглощения *I*, (рис.3), положение максимума которой смещается в область меньших энергий при увеличении концентрации примеси. На вставке рис. 3. приведены спектры оптической плотности кристаллов ZnS:V с [V]=10¹⁹ см⁻³, измеренные при 77 К (кривая *a*) и 300 К (кривая *b*). Видно, что смещение полосы І, составляет порядка 120 мэВ. Такое смещение соответствует температурному изменению ширины запрещенной зоны сульфида цинка. Таким образом, полоса *I*, обусловлена фотоионизационными переходами. Процесс фотоионизации с образованием полосы І, (см. Таблица 2) протекает следующим образом:

$$V^{2+} + hv \rightarrow V^{1+} + e^{+}_{vh}, \qquad (3)$$

что подтверждается компенсацией электронной проводимости при освещении светом с энергией квантов – 1.3 - 1.4 эВ. В [10] была определена энергия ионизационных переходов $V^{2+} \rightarrow V^{1+}$, которая составила 1.49 эВ.

Рис. 2. Спектры оптической плотности в видимой области кристаллов ZnS:V. Образец №2(*1*), №3(*2*) и №4(*3*). На вставке – спектры оптической плотности образца №3 при $T_{_{HM}}$ =77 (*a*) и 300 К(*b*).

Рис. 3. Спектры оптической плотности в ИКобласти кристаллов ZnS:V. Образец №2(*1*), №3(*2*) и №4(*3*). На вставке – спектры оптической плотности образца №3 при $T_{_{\rm ИЗM}}$ =77 (*a*) и 300 К(*b*).

Таблица 2

Оптические переходы в кристаллах ZnS:V

N⁰			$E_{расч,}$ эВ	$E_{pacч,}$ э ${f B}$	$E_{pacч,}$ э ${f B}$		
ЛИ-			$\Delta = 5089$	$\Delta = 5000$	$\Delta = 3500$		
НИИ	$E_{$ эксп, Э \mathbf{B}	Переход	CM	CM ⁻¹	CM ⁻¹	<i>Е_{расч,}</i> эВ[6]	Е _{расч,} эВ[6]
			B=510	B=500	B=510		
1		4 m (D) 2 m (D)	CM ¹	СМ 1	СМ 1	2.00	2.07
I		$T_1(F) \rightarrow T_1(F)$	3.35	3.28	3.0	2.99	2.97
2	2.99	${}^{4}T_{1}(F) \rightarrow {}^{2}A_{2}(F)$	3.10	3.01	2.84	2.98	2.95
3	2.86	${}^{4}T_{1}(F) \rightarrow {}^{2}T_{2}(F)$	3.0	2.98	2.80	2.83	2.80
4	2.76						
5	2.58						
6	2.46	${}^{4}T_{1}(F) \rightarrow {}^{2}E_{2}(G)$				2.49	2.46
7	2.38	${}^{4}T_{l}(F) \rightarrow {}^{2}T_{l}(H)$	2.59	2.53	2.18	2.40	2.35
8	2.30	${}^{4}T_{l}(F) \rightarrow {}^{2}E(D)$	3.04	2.87	2.50	2.32	2.29
9		${}^{4}T_{1}(F) \rightarrow {}^{2}T_{2}(D)$	2.66	2.57	2.24	2.31	2.27
10	2.08	${}^{4}T_{I}(F) \rightarrow {}^{2}E(H)$	2.15	2.08	1.91	2.11	2.09
11	1.98	${}^{4}T_{1}(F) + hv \rightarrow {}^{3}A_{2}(F) + e_{c.b.}$	1.92[10]				
12	1.93	${}^{4}T_{l}(F) \rightarrow {}^{2}T_{l}(H)$	2.27	2.26	2.09	1.97	1.94
13	1.86	${}^{4}T_{1}(F) \rightarrow {}^{2}T_{2}(H)$	1.93	1.88	1.74	1.90	1.88
14	1.74	${}^{4}T_{l}(F) \rightarrow {}^{2}A_{l}(G)$	1.64	1.67	1.52	1.73	1.7
15	1.64	${}^{4}T_{l}(F) \rightarrow {}^{2}T_{l}(P)$	2.02	1.92	1.77	1.62	1.62
16	1.46	${}^{4}T_{l}(F) \rightarrow {}^{4}T_{l}(P)$	1.77	1.76	1.49	1.42	1.4
17	1.36	${}^{4}T_{1}(F) + hv \rightarrow {}^{5}T_{2}(D) + e^{+}_{v.b}$	1.49[10]				
18	1.32	${}^{4}T_{1}(F) \rightarrow {}^{2}T_{2}(G)$	1.61	1.66	1.58	1.32	1.32
19	1.26	${}^{4}T_{l}(F) \rightarrow {}^{2}T_{l}(G)$	1.33	1.31	1.33	1.28	1.28
20	1.19	${}^{4}T_{1}(F) \rightarrow {}^{4}A_{2}(F)$	1.07	1.02	0.76	1.14	1.14
21	1.07						
22	0.97						
23	0.88	${}^{4}T_{I}(F) \rightarrow {}^{2}E(G)$	1.30	1.26	1.26	0.82	0.82
24	0.62	${}^{4}T_{1}(F) \rightarrow {}^{4}T_{2}(F)$	0.63	0.62	0.5	0.54	0.54

Следует отметить, что по мере увеличения степени легирования кристаллов наблюдалось размытие полос поглощения. Аналогичное размытие структуры линий имеет место в спектрах поглощения в видимой области спектра. Очевидно, это связано с проявлением межпримесного взаимодействия ионов V²⁺, поскольку межцентровое взаимодействие приводит к смещению ширины запрещенной зоны (см. Таблица 1), а локальные механические напряжения, приводящие к изменению периода решетки кристаллов, в исследованиях дифракции электронов обнаружены не были.

Выводы

Проведенные исследования позволяют сделать следующие выводы:

 Разработана методика диффузионного легирования ванадием монокристаллов ZnS. Максимальная концентрация примеси ванадия, определенная по сдвигу края поглощения в кристаллах ZnS:V, равна 10¹⁹ см⁻³.

- 2. Идентифицирована природа линий поглощения кристаллов ZnS:V в видимой и ИКобласти спектра.
- 3. Показано, что сильнолегированные кристаллы ZnS:V при комнатной температуре характеризуются фотоионизационными переходами в области квантов падающего света 1.2 и 1.8 эВ.

Список литературы

- Косяченко Л.А, Паранчич С.Ю., Танасюк Ю.В., Склярчук В.М., Скларчук Е.Ф., Маслянчук Е.Л., Мотущук В.В.Генерационно-рекомбинационные центры в СdTe:V // ФТП. 2003. Т.37, №4. С. 469-472.
- Jarasiunas K., Gudelis V., Delaye P., Roosen G. Nonresonant four-wave mixing in photorefractive CdTe crystals using a picosecond parametric generator // Rev. Sci. Instrum. – 1998. - V.69, No. 11. – P. 3776-3779.
- Peka P., Lehr M. U., Schulz, H.-J., Pohl U. W., Kreissl J., Irmscher, K. Vanadium centers in ZnTe crystals. I. Optical properties // Phys. Rev. B. – 1996. - V.53, No.4. – P. 1907-1916.
- Goetz G., Pohl U.W., Schulz H.-J. Optical properties of vanadium ions in ZnSe // J.Phys.: Condens. Matter. – 1992. – V.4. – P. 8253-8266.
- Zunger A. 3d-transition atom impurities in semiconductors // Solid State Physics. - 1986. - V. 39. - P. 276-474
- Wei Q., Guo L.-X., W. Bing, Zhu X.-M. Optical spectra and defect structure for V²⁺ ions in ZnS at low temperature // Physica B. – 2012. – V. 407. - P. 2808– 2810.
- Korostelin Yu.V., Kozlovsky V.I., Nasibov A.S., Shapkin P.V. Vapour growth of II-VI solid solution single crystals // J. Cryst. Growth. – 1996. - V. 159. - P. 181-185.
- Хьюи Дж. Неорганическая химия. -М.: Химия, 1987. - 625 с.
- G. Bevilacqua, L. Martinelli, E. E. Vogel. Jahn-Teller effect and the luminescence spectra of V²⁺ in ZnS and ZnSe // Phys. Rev. B. – 2002. - V.66. -P. 155338-1 - 15538-5.
- 10. Goetz, U.W.Pohl, H.-J.Schulz. Optical

properties of vanadium ions in ZnSe // J.Phys.: Condens. Matter. – 1992. - V.4. - P. 8253-8266.