OPTICAL AND OPTOELECTONIC AND RADIATION SENSORS

ОПТИЧНІ, ОПТОЕЛЕКТРОННІ І РАДІАЦІЙНІ СЕНСОРИ

УДК 535.2, 535.5, 536.3, 53.08

ИЗМЕРЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ФАКТОРОВ ЭФФЕКТИВНОСТИ ПОГЛОЩЕНИЯ ПЛАТИНОВОГО БОЛОМЕТРА НА ДЛИНЕ ВОЛНЫ ИЗЛУЧЕНИЯ 1,06 МКМ

С. В. Погорелов¹, Б. В. Сафронов², В. П. Балкашин², И. А. Приз²

¹Национальный фармацевтический университет 53, ул. Пушкинская, г. Харьков, 61002, Украина, e-mail: svpog@yahoo.co.uk ²Харьковский национальный университет имени В.Н. Каразина 4, пл. Свободы, г. Харьков, 61022, Украина

ИЗМЕРЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ФАКТОРОВ ЭФФЕКТИВНОСТИ ПОГЛОЩЕНИЯ ПЛАТИНОВОГО БОЛОМЕТРА НА ДЛИНЕ ВОЛНЫ ИЗЛУЧЕНИЯ 1,06 МКМ

С. В. Погорелов, Б. В. Сафронов, В. П. Балкашин, И. А. Приз

Аннотация. Обоснована и экспериментально проверена методика измерения температурной зависимости факторов эффективности поглощения тонкопроволочных платиновых болометров для *E*- и *H*- поляризаций излучения с учётом неравномерности распределения падающей интенсивности. Измерения выполнены для платиновых болометров на излучении неодимового лазера с длиной волны 1,06 мкм.

Ключевые слова: болометр, лазер, энергия, поляризация, поглощение

ВІМІРЮВАННЯ ТЕМПЕРАТУРНОЇ ЗАЛЕЖНОСТІ ФАКТОРІВ ЕФЕКТИВНОСТІ ПОГЛИНАННЯ ПЛАТИНОВОГО БОЛОМЕТРА НА ДОВЖИНІ ХВИЛІ 1,06 МКМ

С. В. Погорєлов, Б. В. Сафронов, В. П. Балкашин, І. О. Пріз

Анотація. Обгрунтовано і експериментально перевірено методику вимірювання температурної залежності факторів ефективності поглинання тонкодротяних платинових болометрів для *E*- і *H*- поляризації випромінювання з урахуванням нерівномірності розподілу

© С. В. Погорєлов, Б. В. Сафронов, В. П. Балкашин, І. О. Пріз, 2014

падаючої інтенсивності. Вимірювання виконані для платинових болометрів на випромінюванні неодимового лазеру з довжиною хвилі 1,06 мкм.

Ключові слова: болометр, лазер, енергія, поляризація, поглинання

MEASUREMENT OF TEMPERATURE DEPENDENCE OF FACTORS OF ABSORPTION EFFICIENCY OF PLATINUM BOLOMETER ON RADIATION WAVELENGTH 1.06 MICRON

S. V. Pogorelov, B. V. Safronov, V. P. Balkashin, I. A. Priz

Abstract. The method of temperature dependence measurement of factor of absorption efficiency of thin-wire platinum bolometer for E- and H-polarized radiation is grounded and experimentally checked taking into account intense distribution unevenness. Measurements have been carried out for platinum bolometers on the neodymium laser with wavelength 1.06 microns.

Keywords: bolometer, laser, energy, polarization, absorption

ВВЕДЕНИЕ. Тонкопроволочные болометры широко используются для измерения энергетических [1], поляризационных [2] и пространственных [3] параметров интенсивного и широкоапертурного лазерного излучения. Они выдерживают довольно высокие плотности интенсивности лазерного излучения, сравнительно малоинерционные и способны работать в широком спектральном диапазоне. Также болометрические решетки являются измерителями проходного типа, что позволяет их использовать во время различных технологических процессов. К недостаткам болометрических решеток можно отнести трудоемкость изготовления и возможность разрыва болометрического элемента в процессе использования, что приводит к выходу прибора из строя.

Высокие уровни интенсивности излучения приводят к существенному нагреву болометра, появлению нелинейности его характеристики преобразования и систематических погрешностей измеряемых параметров излучения. Нелинейность характеристики преобразования болометра вызывается температурными зависимостями его основных физических параметров (температурного коэффициента сопротивления, удельной теплоемкости, фактора эффективности поглощения (ФЭП) и коэффициента теплообмена с внешней средой) и усиливается неравномерностью распределения падающей интенсивности излучения по его длине. Одним из наиболее подходящих материалов тонкопроволочных болометров является платина, которая не коррозирует до температуры плавления, диамагнитна, имеет стабильные и плавные температурные зависимости своих физических параметров. Для платины хорошо известна табличная температурная зависимость удельного сопротивления [4], из которой довольно легко находятся температурные зависимости удельной проводимости и температурного коэффициента сопротивления.

Температурная зависимость ФЭП платинового болометра при измерении энергии импульса лазера вносит доминирующий вклад в его нелинейность характеристики преобразования [5]. ФЭП болометра определяется спектральным диапазоном, углом направления линейной поляризации излучения, диаметром болометра и его температурой. ФЭП болометра и, особенно, его температурная зависимость при экспериментальном измерении встречают значительные технические трудности.

Температурная зависимость комплексного показателя преломления платины на длине волны 1,06 мкм неизвестна и невозможно теоретически определить температурные зависимости ФЭП болометра как в приближении геометрической оптики, так и по точному решению задачи дифракции электромагнитного излучения на цилиндре. Данные зависимости необходимо знать для определения нелинейности характеристики преобразования болометра и оценки систематических погрешностей измеряемых параметров лазерного излучения, возникающих из-за нелинейности.

Целью данной работы является обоснование и экспериментальная проверка методики измерения ФЭП платинового тонкопроволочного болометра для E- и H- поляризованных излучений $q^{E,H}$ в зависимости от температуры нагрева болометра излучением и плотности падающей энергии импульсного неодимового лазера с длиной волны 1,06 мкм.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВ-КА. Блок-схема использованной установки показана на рис.1, где 1-неодимовый лазер ГОС-1001, работающий в режиме свободной генерации с длительностью импульса излучения $t_u = 0,8$ мс и длиной волны $\lambda = 1,06$ мкм; 2 – плоскопараллельная стеклянная пластина, расположенная под углом Брюстера к падающему на неё излучению лазера; отражённое от неё линейно поляризованное излучение направлено вертикально вверх; 3 – собирающая линза с фокусным расстоянием 75 мм; 4 – профильный болометр в виде одномерной решётки из элементов платиновой проволоки с длиной l = 24 мм, периодом $\chi = 1,5$ мм, диаметром близким к 10 мкм и количеством элементов n = 16 (рис. 2); решётка может поворачиваться на произвольный угол вокруг оси оптического луча; сигналы регистрируются с каждого болометрического элемента решётки; 5 калориметр для измерения энергии, прошедшей через болометр; 6 – многоканальный высокочувствительный и малоинерционный аналого-цифровой преобразователь (АЦП); 7 – электронно-вычислительная машина (ЭВМ); 8-калориметр, поглощающий прошедшее через плоскопараллельную пластину неиспользуемую часть излучения.

Выходящий из лазера оптический луч имеет диаметр около 50 мм, а в месте расположения решётки после фокусирующей линзы – около 20 мм.

Рис.1. Блок-схема экспериментальной установки.

Вращая решётку относительно оси оптического пучка, можно выставить болометрические элементы решётки параллельно направлению поляризации электрического поля излучения, и это будет *E*-поляризованное падающее излучение на болометр. Для *H*-поляризованного излучения направление электрического поля будет перпендикулярно оси болометрических элементов.

Нагрузочные сопротивления болометрических элементов R намного больше их начальных значений R_{i0} , а входные сопротивления каналов АЦП намного больше сопротивлений элементов. При таких условиях АЦП регистрирует сигналы пропорциональные напряжению.

Рис.2. Болометрическая решётка с диаметром элементов ≈10 мкм.

МЕТОДИКА ИЗМЕРЕНИЙ. В методике используется обобщенная площадь оптического пучка [5], в которой падающая энергия оптического пучка распределена равномерно, а значит и болометр в этой площади нагревается равномерно. Обобщённая площадь оптического пучка может быть определена через коэффициент неравномерности распределения интенсивности излучения по площади болометрической решётки $\delta = \delta_1^2$, где δ_1 - коэффициент неравномерности по одной из координат в сечении пучка, который считаем осесимметричным. Коэффициент δ_1 определяется по выражению [6]

$$\delta_1 = \frac{1}{n} \sum_{i=1}^n \frac{U_i^2}{\overline{U}^2} , \qquad (1)$$

где $U_i = \frac{\Delta R_i}{R_{i0}}$ - сигналы болометрических элементов решетки, представляющие относительные приращения их сопротивлений под действием оптического излучения; ΔR_i и R_{i0} - абсолютное приращение сопротивления и первоначальное его значение; $\overline{U} = \frac{1}{n} \sum_{i=1}^{n} U_i$ - среднее значение сигналов болометрических элементов решётки. Обобщенная площадь оптического пучка S_0 будет равна

$$S_0 = \frac{S}{\delta} \quad , \tag{2}$$

где *S* - площадь болометрической решётки. Сигнал решётки при равных начальных сопротивлениях *R*_{i0} будет

$$U = \sum_{i=1}^{n} \Delta R_{i} / \sum_{i=1}^{n} R_{i0} = \frac{1}{n} \sum_{i=1}^{n} \Delta R_{i} / R_{i0} = \overline{U}, \quad (3)$$

и равен среднему от значений сигналов всех элементов решётки.

После воздействия импульса излучения АЦП регистрирует сигналы болометрических элементов U_i , а по ним сигнал решётки $U = \Delta R/R_0$, где ΔR - абсолютное суммарное приращение сопротивлений элементов решётки, а R_0 - абсолютное суммарное значение их

начальных сопротивлений. Значение ΔR определяется частями болометрических элементов, которые попадают в обобщенную площадь оптического пучка, а начальное их сопротивление $R_{0\delta}$ будет в δ раз меньше значения R_0 . И поэтому сигнал болометра для обобщенной площади (обобщенный сигнал решетки) будет

$$U_0 = \frac{\Delta R}{R_{0\delta}} = \delta \frac{\Delta R}{R_0} = \delta U$$
 (4)

Температура частей болометрических элементов, облучаемых обобщённой оптической энергией, будет постоянной *T* и определяется выражением

$$\delta U = \alpha_0 T + \alpha_1 T^2, \qquad (5)$$

где $\alpha(T) = \alpha_0 + \alpha_1 T$ - температурный коэффициент сопротивления платины и $\alpha_0 = 3978 \cdot 10^{-3} cpa \partial^{-1}$, а $\alpha_1 = -5,87 \cdot 10^{-7} cpa \partial^{-2}$. Температура нагрева болометра для различных поляризаций падающего излучения находится из решения уравнения (5) в виде

$$T^{E,H} = \frac{\alpha_0 \left[-1 + (1 + 4\frac{\alpha_1}{\alpha_0^2} U_0^{E,H})^{\frac{1}{2}} \right]}{2\alpha_1} \cdot (6)$$

Обобщенный сигнал решётки можно записать

$$U_0^{E,H} \cdot \theta = \frac{\alpha(T)q^{E,H}(T)}{c(T)} \frac{E \cdot d}{S_0 m}, \qquad (7)$$

где
$$\theta = 1 + \frac{1}{2} \frac{t_u}{\tau}$$
 - систематическая погреш-

ность на уменьшение сигнала болометра за счёт его тепловой постоянной времени $\tau = 7,23$ мс; $q^{E,H}(T)$ - температурные зависимости ФЭП болометра; c(T) - температурная зависимость удельной теплоёмкости платины; E - энергия импульса лазера; m - погонная масса болометрического элемента и dего диаметр. Удельная теплоёмкость платины линейно зависит от температуры [7]

$$c(T) = c_0 + c_1 T,$$
(8)

где $c_0 = 0,1306$ Дж/(г·град) и $c_1 = 2,76 \cdot 10^{-5}$ Дж/(г·град). Проанализируем рост удельной

Проанализируем рост удельной теплоёмкости при импульсном нагреве болометра. Уравнение теплового баланса будет для выделившейся энергии *E*' (9)

$$(c_0 + c_1 T)dT = d E'/m , \qquad (5)$$

решение которого при нулевых начальных условиях имеет вид

$$c_0 T + \frac{1}{2} c_1 T^2 = \frac{E'}{m} , \qquad (10)$$

а значение максимальной температуры получается

$$T = \frac{c_0 \left[-1 + \left(1 + 2\frac{c_1}{c_2} \frac{E'}{m} \right)^{\frac{1}{2}} \right]}{c}$$
(11)

Если это решение разложить в ряд Тейлора относительно точки $\frac{E'}{m} = 0$ и ограничиться слагаемым второго порядка малости, то температура *T* запишется

$$T \approx \frac{E'}{mc_0} \left(1 - \frac{1}{2} \frac{E'}{mc_0} \cdot \frac{c_1}{c_0} \right), \tag{12}$$

и зависимость удельной теплоёмкости от выделившейся энергии E' будет

$$c\left(\frac{E'}{mc_0}\right) = \frac{c_0}{1 - \frac{1}{2}\frac{c_1}{c_0}\frac{E'}{mc_0}}.$$
 (13)

В диапазоне температур до $10^{3\circ}C$ температурную зависимость удельной теплоёмкости платины в нашей задаче можно выразить

$$c(T) = c_0 + 0.56c_1T \,. \tag{14}$$

Исходя из выражения (7) и используя полученную температурную зависимость удельной теплоемкости (14), получаем формулу для определения ФЭП болометра

$$q^{E,H} = \frac{U_0^{E,H} \cdot \theta \cdot c(T) \cdot m \cdot S_0}{\alpha(T) \cdot d \cdot E}$$
 (15)

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ. Температура окружающей среды при выполнении измерений составляла $T_0 = 20^{\circ}C$, а значение $\alpha(20^{\circ}C) = 3,966 \cdot 10^{-3} \text{град}^{-1}$. Площадь решётки $S = nl \chi = 5,76 \text{ см}^2$, коэффициент $\theta = 1,055$. Результаты измерений и вычислений по приведенным формулам приведены в таблице 1.

Болометрическую решетку сначала располагали параллельно направлению поляризации электрического поля излучения (Е-поляризация), затем перпендикулярно направлению поляризации электрического поля излучения (Н-поляризация). Для каждого положения решетки проводили по шесть измерений для различных значений энергии импульса Е, которая измерялась калориметром 5 (рис. 1).

Для каждого измерения регистрировались сигналы с каждого болометрического элемента решетки. По этим сигналам рассчитывался сигнал решетки (3) и коэффициент неравномерности распределения вдоль координаты, перпендикулярной осям болометров (1). Затем определялись коэффициент неравномерности распределения интенсивности по площади болометрической решетки $\delta = \delta_1^2$, обобщенная площадь оптического пучка S_0 , плотность падающей энергии W и обобщенный сигнал решетки U_0 (4).

Температуру болометрических элементов находили как сумму температуры окружающей среды и температуры нагрева болометра (6), затем вычисляли температурный коэффициент сопротивления платины и удельную теплоемкость.

По формуле (15) для каждого измерения рассчитывался ФЭП болометра.

Таблица 1.

Ν	Е, Дж	$U = \frac{\Delta R}{R_0}$	$\eta = \frac{U}{\mathrm{E}} \cdot 10^{-2} ,$ $\mathcal{J} \mathfrak{s} e^{-1}$	$\delta = \delta_1^2$	$S_0 = \frac{S}{\delta}$, cm ²	$W = E/S_0,$ $\frac{A \varkappa}{c m^2}$	$U_0 = \delta U$	$T = T_{\pi} + T_0,$ ⁰ C	$lpha(T)\cdot 10^3,$ $rpa\partial^{-1}$	с(Т), <u>Дж</u> г•град	$q^{E,H}$
1	5,13	0,1781	3,47	2,05	2,81	1,83	0,3651	113,3	3,899	0,1324	0,133
2	4,95	0,1694	3,42	2,05	2,81	1,76	0,3473	108,8	3,902	0,1323	0,132
3	15,5	0,4700	3,03	1,99	2,89	5,36	0,9353	264,6	3,813	0,1347	0,121
4	20,5	0,5956	2,91	1,93	2,98	6,88	1,1495	323,5	3,776	0,1356	0,118
5	22,5	0,6431	2,86	1,90	3,03	7,43	1,2219	346,6	3,763	0,1360	0,117
6	22,2	0,6438	2,90	1,93	2,98	7,45	1,2425	349,4	3,761	0,1360	0,119
<i>Н</i> -поляризация											
7	4,75	0,3056	6,34	2,31	2,49	1,91	0,7059	203,0	3,847	0,1338	0,255
8	5,05	0,3144	6,23	2,34	2,46	2,05	0,7357	210,8	3,842	0,1339	0,246
9	15,5	0,8125	5,24	2,19	2,63	5,89	1,7794	503,3	3,671	0,1384	0,224
10	15,1	0,8019	5,31	2,19	2,63	5,74	1,7524	495,3	3,675	0,1383	0,226
11	20,5	1,0219	4,99	2,13	2,70	7,59	2,1766	622,7	3,600	0,1403	0,220
12	20,6	1,0138	4,92	2,13	2,70	7,63	2,1594	617,4	3,604	0,1402	0,217
13	22,1	1,0519	4,76	2,13	2,70	8,19	2,2405	644,3	3,588	0,1406	0,211
14	30,0	1,3100	4,37	2,07	2,78	10,79	2,7117	792,1	3,501	0,1429	0,202

Результаты измерений в вычислений Е-поляризация

На рис. 3 приведены зависимости ФЭП болометра $q^{E,H}$ от плотности падающей энергии W. Видно их уменьшение с ростом плотности энергии и уменьшение q^H на 25% $W \approx 11 \ Дж/cm^2$ (температуре нагрева болометра $\approx 800°C$). Коэф-

фициент дихроизма $K_{\scriptscriptstyle D}$, который равен отношению $K_D = \frac{q^H}{q^E}$, остаётся постоянным в

рассматриваемом диапазоне плотностей энергии.

Рис.3. Зависимость q^{E,H} от плотности энергии W.

На рис.4 приведены зависимости коэффициентов преобразования $\eta^{E,H}$ и $\eta = \eta^E + \eta^H$ от падающей энергии лазерного излучения. Видно их уменьшение с увеличением оптической энергии.

Рис. 4. Зависимости $\eta^{E,H}$ й $\eta = \eta^E + \eta^H$ от падающей энергии Е.

ВЫВОДЫ. Таким образом обоснована методика измерения ФЭП болометра с использованием профильной болометрической решётки. В методике определяется коэффициент неравномерности распределения падающей интенсивности по площади решётки и обобщённая площадь оптического пучка, находятся относительные приращения сопротивления по частям болометрических элементов в обобщённой площади, определяется температура нагрева болометра в обобщённой площади, значения температурного коэффициента сопротивления и удельной теплоёмкости платины. Используя эти величины рассчитывался ФЭП болометра при измеренной плотности энергии и температуре его нагрева.

Показано, что температурная зависимость ФЭП лазерного излучения на длине волны 1,06 мкм для тонкопроволочного платинового болометра является убывающей практически линейной функцией как для Е-поляризованного, так и для Н-поляризованного излучения, при этом коэффициент дихроизма не изменяется.

Полученные температурные зависимости коэффициентов преобразования тонкопроволочных болометров позволят исключить систематические погрешности измерения, вызванные температурными зависимостями основных физических параметров болометра (в том числе и ФЭП). По полученным результатам можно определить нормированный коэффициент преобразования двухрешёточного болометра в виде линейной функции и использовать его при измерении параметров лазерного излучения.

Список использованной литературы

- Кузьмичев В. М., Золотайкин А. В. Исследование нелинейности характеристик преобразования тонкопроволочных болометрических измерителей мощности и энергии лазерного излучения // Измерительная техника. – 1990. – № 12. – С. 20-21.
- Кузьмичев В. М., Кузьмичева Е. В. Измерение эллиптической поляризации интенсивного лазерного излучения нелинейными тонкопроволочными болометрами // Измерительная техника. – 1998. – №6. – С.19-22.
- Кузьмичев В. М., Соловьев В. А., Лапко А. В. Измерение энергетических параметров интенсивного лазерного излучения профильным тонкопроволочным болометром // Радиотехника и радиоастрономия. 1999. –Т. 4. № 3. С. 287-295.
- Таблицы физических величин. Справочник под ред. акад. И.К. Кикоина. – М.: Атомиздат, 1976. – 1006 с.
- 5. Грязнов М. И. Интегральный метод измерения импульсов. М.: Советское радио.-1975.-280 с.
- Кузьмичёв В. М., Похилько С. Н. Методика измерения обобщённой площади лазерного пучка // Измерительная техника.-2000.-С.39-42.
- Зиновьев В. Е. Теплофизические свойства металлов при высоких температурах. – М.: Металлургия, 1989.-384 с.

Стаття надійшла до редакції 17.04.2014 р.