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Defence forces rely on electromagnetic domi-
nance for command, control, intelligence, sur-
veillance, reconnaissance, and related applica-
tions that utilize the electromagnetic spec-
trum. Severe pressure on available spectrum
from all spectrum users creates a situation de-
manding significant adaptivity and flexibility
of communications systems to communicate
successfully and achieve mission goals. Com-
munications receivers operating in the pres-
ence of high power jammers or interference are
operating “in the blind”. “In the blind” opera-
tions occur when the received jamming-
to-signal ratio and/or received jamming power
are high enough that either the radiofrequency
interface is overloaded.

A wide variety of reported techniques use
signal processing to separate interference from
desired communication signals.

Recently, new techniques have been pro-
posed, each of which reduce interference to de-
sired signals or improve the ability to correctly
demodulate desired signals in the presence of
interference. High levels of interference inter-
acting with the dynamic range of the receiver
result in the receiver being desensitized or even
blocked by large numbers of intermodulation
distortion signal components.

In September 2010 the Defence Advanced Re-
search Projects Agency decided to collect its re-
search efforts through the Broad Agency An-
nouncement (BAA) process and started “The
Communication Under Extreme RF Spectrum
Conditions” (CommEXx) program [1].

According to BAA, CommEx program is in-
terested in those technologies and techniques
that address successful mission communica-
tions in the presence of four types of interfer-
ence: 1) high power jamming resulting in the
receiver being blinded by intermodulation dis-
tortion, 2) traditional types of jamming, 8) adap-
tive jamming and 4) distributed interference
from multiple sources.

As claimed, CommEx’s technical objective is
todevelop innovative adaptive technologies for
adaptive interference suppression, and exam-
ples of such techniques may include: awareness
of affiliated systems interference source prop-
erties and behaviors; frequency and time agil-
ity; smart antenna techniques; advanced cir-
cuit/component design and novel receiver ar-
chitectures; linear, adaptive, and non-linear
signal processing techniques; adaptive modula-
tion and error control waveform properties;
adaptive networking, network topology,
multi-link, and multi-networking.

Issupposed, this task advances the ability to
suppress extreme power interference sources,
develops technology to respond to novel or pre-
viously unknown interference behaviors, and
determines how to integrate multiple interfer-
ence suppression techniques. Also, this task
should address sequencing multiple tech-
niques in response to extreme, known and un-
known interference behaviors and multiple in-
terference sources.

Signal processing theory plays an increas-
ingly central role in the development of modern
telecommunication and information processing
systems, and has a wide range of applications.
The observable signals in interference environ-
ment are always distorted, incomplete and
noisy. Hence, jam/noise reduction and the re-
moval of channel distortion is an important part
of a signal processing system. The purpose of
this article is to provide a short and structured
state of the art review of methods of signal pro-
cessing under interference environment.

Modern communications systems rely on ad-
vanced signal processing methods for fast, effi-
cient, reliable and low-cost communications.
The signal processing functions in recent com-
munications system characterized by the fol-
lowing features [2; 3].

Source coders compress signals at the trans-
mitter by removing the correlation and redun-
dancies from the signals; source decoders de-
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compress and reconstruct the signals at the re-
ceiver. Source coding methods can greatly re-
duce (often by a factor of 10—20) the required
bit rate and bandwidth and hence increase the
capacity and speed of data transmission.

The purpose of channel coding is to reduce
transmission errors due to noise, fading and loss
of data packets. Channel coding involves the use
of convolution and block coders for the addition

- of error-control bits to the source data in order
to improve the error detection and error correc-
tion capability of communication systems.

Multiple access — this, as the name implies,
provides simultaneous access to multiple users
on the same shared bandwidth resource. Multi-
ple access systems are based on division of time,
frequency, code or space among different us-
ers, leading to time division multiple access
(TDMA), frequency division multiple access
(FDMA), code division multiple access (CDMA)
and space division multiple access (SDMA)
methods, respectively.

Rake receivers advantageously use the effect
of the multipath propagation by combining the
reflections of a signal received from different
propagation paths. This can reduce fading and
add to the strength of the received signal.

Channel equalization is used to remove the
distortions and time-dispersion of signals that
result from the nonideal characteristics of radio
channels. Channel equalization reduces the sym-
bol overlaps and bit error rate at the receiver.

Smart antennas are used for a variety of pur-
poses from increasing the signal-jam/noise ra-
tio to space division multiple access. Smart an-
tennas are arrays of phased antennas whose
beam direction and gain are controlled by adap-
tive signal processing methods so that the
transmitted electromagnetic power is more ef-
ficiently beamed and selectively directed to-
wards the mobile users [4].

Space-time signal processing refers to the sig-
nal processing methods that utilize the trans-
mission and/or reception of several signals
across time and space using multiple transmit-
ter/receiver antennas [5; 6].

Space, polarization, angle, time, frequency di-
versity schemes deal with the transmission/re-
ception of the replicas of a signal, or a combina-
tion of several signals, transmitted via several
independent routes, namely time slots, fre-
quency channels, multipath reflections, spatial
directions or polarizations. The success of di-
versity schemes depends on the degree to which
the noise and fading on the different diversity
branches are uncorrelated and how the infor-
mation from different routes and channels is
processed and combined. Diversity schemes can
help to overcome jam/noise and fading in wire-
less communications channels and increase the
channel capacity [2; 7].

The Cognitive Radio Technology is based on
Software Defined Radios (SDR) [8]: all func-
tions, modes and applications can be configured
and reconfigured by software, i. e. all modula-
tion, cryptography, protocols, and source cod-
ing (voice, data, imagery) are established using
software; mapy types of modulation can be ac-
complished over a broad range of frequencies;
SDR can identify then use empty spectrum to
communicate more efficiently.

Modern radioelectronic systems and sets
functioning is implemented under parametric
and nonparametric prior uncertainty conditions
[9—11]. So while developing ECCM technologies
on extreme jam environment, there is a problem
of possible ways of prior uncertainty overcom-
ing selection. The last ones determine the corre-
sponding signal processing algorithms.

Some authors [10—13] emphasize three main
groups of prior uncertainty overcoming methods:
parametric and adaptive methods; nonparametric
statistical methods and robust methods.

Parametric methods are meant for algo-
rithms synthesis under parametric prior uncer-
tainty conditions. Bayesian methods rank an
important place among this methods [14; 10;
11]. On strictly Bayesian problem statement
the transition is accomplished from conditional
probability densities

p=(x/%0=1), p=(x/n,06=0)

under signal presence (6 =1) or its absence
(6 =0) to a posteriori probability densities

px/8=1), p(x/6=0),

which are independent of unknown parameters
A, u. As a result, prior uncertainty is removed.
On partly Bayesian problem statement one
should use the postulate, according to which
prior probability densities have been consider
uniform:

Po(}) =const, p,(n) =const,

then, integrating on , accomplish a transition
to a posteriori probability densities.

Asymptotic invariance property of Bayesian
algorithms quality index with respect to prior
distributions is important for Bayesian method
substantiation [10; 11; 13].

Under observation period increasing,
Bayesian algorithm, synthesized on parametric
prior uncertainty conditions, regardless of
prior distribution, usually converge to the al-
gorithm, synthesized on full prior information.
This convergence can be interpreted as an algo-
rithm adaptation to unknown distribution pa-
rameters. Due to mentioned Bayesian algo-
rithm property, prior distributions can be cho-
sen more or less arbitrarily.

Parametric methods of synthesis, considered
above, lead to algorithms, adapting to unknown
parameters, or adaptive algorithms [15; 16].
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In the cases, when unknown or variable pa-
rameter is easy controlled signal or jam/noise
parameter, one can overcome prior uncertainty
as a result of adjustment (adaptation) of signal
processing (SP) set while observing. SP set ad-
aptation considerably gets more complicated,
when a few parameters or distribution densities
p=(x/%06=1), p=(x/u,0=0), are unknown.
So these algorithms could be found very compli-
cated and unfeasible for functioning in real
time scale [15].

Another way of prior uncertainty overcom-
ing is based on development of algorithms, that
are insensitive or weakly sensitive to signals
and jams/noises statistical characteristics. In
the case, when distributions of jam/noise and
signal and jam/noise composition are un-
known, this way leads to nonparametric algo-
rithms, in another case - when distributions of
jam/noise and signal and jam/noise composi-
tion are close to some standard distribution
class, this leads to robust algorithms [17; 18].

Robust methods allow to synthesize algo-
rithms, which are near-effective to optimal
ones and worsen an efficiency while data distri-
bution deflect from initial models in small
ranges. Robust methods hold intermediate
place between parametric and nonparametric
ones and don’t require that rather large prior
information quantity, parametric methods
need of, and in the same time utilize more of
prior information quantity, than
nonparametric methods. Consequently robust
algorithms are more  effective than
nonparametric, but this result is obtained of
the cost of narrowing of possible distribution
class, algorithm robustness remains in.

Recently more often nonparametric methods
attract attention in SP problems. Statistical
method is called nonparametric, if its use don’t
suppose the knowledge of data distribution. SP
set is called nonparametric, if its decision sta-
tistics is independent of jam/noise distribution
under signal absence and jam/noise presence
[10; 13]. This means, that such a SP set provide
quality indexes, which doesn’t depend of
jam/noisestatistic characteristics{13;19; 20].

The most known papers consider problems of
processing of signals against interferences
(noises) in terms of linear signal space LS;
where interaction result x of signal s and noise
n is described by commutative group additive
operation [11; 14; 21]:

X =8§-+n.

But a number of authors assume general for-
mulation for signal processing problem with re-
gard to signal and interference (noise) interac-
tion [12]:

x=s8®n,

where & — some binary operation of a group
[13; 22; 9].

Algebraic lattices are widely known, re-
searched and deseribed in many papers. As a
signal space we consider distributive lattice
L(v, A) with operations of upper and lower
bounds respectively [23; 24}:

* av b =sup,{a,b},

a ~nb =inf, {a,b}.

In this case, elements a, b of lattice L(v, A)

can be both elements of n-dimensional vector
space (a=[a,,q;,..,a,], b=[b,b,,...,b], and
functions (deterministic or stochastic), defined
onsomeset T (a =a(t),b=0b(t), t eT).

The signal s,(t) with completely defined pa-
rameters from the ensemble

{Sk(t)} E{Sk} (k=0,1,..,K)
is represented as
si(t) = si(t’ 7\‘&’ “l) =Si(t, H,-),
where A, is informational parameters vector;

u; is non-informational parameters vector;
meanwhile informational parameters are ab-
sent (&, =0), and there are no unknown and ran-
dom parameters among non-informational pa-
rametersp,.

Application area for such signals is re-
stricted by theoretical analysis, which results
can be applied for comparison with the other al-
gorithms of signal processing. Model of inter-
action of signal s; from ensemble {s,}
(k=0,1,...,K) and noise n in signal space with al-
gebraic lattice properties is described by rela-
tion:

(1)
where 5,=0, O is zero element of the lattice
L{v, A).

Structure-forming function for optimal sig-
nal processing algorithm in this case is

x=svn,

y=5§nx, (2)
where signal estimate § is
s, i#0;
§=¢" i (2.a)
5, =0, i=0.

According to lattice absorption property [23;
241}, the result of optimal signal processing (2)
is identical to received signal with completely
known parameters:

(3)

Formula (3) implies that optimal processing
device output uniquely produce the received
signal s;.

Function (2) corresponds to optimal process-
ing of signals from ensemble {s,} against inter-
ferences (noises) n in the case of their interac-
tion (1) in signal space with algebraic lattice

y=8 n(svn)=s,
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properties. Fact y, of multiple-alternative de-
tection of signal s; (or its nondetection facty,)is

registered by the rule:

5, =Y

yngx={ @)

§,=0=>y,,
where signal estimate § is defined by relation
(2a).

Therefore, optimal processing algorithm (4)
for signals with completely defined parameters
against interferences (noises) in the case of
their interaction in signal space with algebraic
lattice properties is characterized by absolute
values of signals multiple-alternative detection
quality factors: conditional probabilities of
correct multiple-alternative detection D, of sig-
nal s; are equal to one: D; = 1, meanwhile condi-
tional probabilities of false alarm F and errone-
ous multiple-alternative detection D, are
equal to zero: F=0, D, = 0.

The comparison of optimal detector, which
implements algorithm (4) with classical opti-
mal detector [14] of signals with completely
known parameters allows to do following con-
clusions:

1. The efficiency of optimal processing device,
which implements algorithm (4) is invariant
with respect to parametrical prior
uncertainty conditions.

2. The efficiency of optimal processing device,
which implements algorithm (4) is invariant
relatively to non-parametric prior uncertainty
conditions. Meanwhile the stability of signals
multiple-alternative detection quality
factors values D; and F, D, is provided
under arbitrary interference (noise)
distribution laws:

D,=1; F=0, D_=0; while p (x)=var;

where p, (x) is noise probability density in re-

ceiving channel.

3. The efficiency of optimal multichannel
K

processing device of group signal s= hh

formed by signals (s} (k=0,1,..,K) with
completely known parameters against
interferences (noises) in signal space with
algebraic lattice is invariant to the division
multiple access method, the number K of
processing channels and the applied shape of
signals s;.

Actually, at signal s; extraction in i-th ll)rro-

cessing channel from grouped signal s=v s
kel k

against a background of interferences (noises)
n, signal y, at the output of i-th processing
channel is defined by the following expression:

K K
y,=s(k\ils,,vn) =si/\(s,.v[h\;ls,]n)=s,.

23,

Obtained relation implies efficiency of multi-
channel processing of signals with known pa-
rameters, which solves a problem of multi-
ple-alternative detection and extraction of sig-
nals against interferences (noises) from the set
{sx} is independent of listed above factors.

All mentiqned differences between classical
signal detector [14] and detector, which realize
algorithm (4) are explained by fundamental dif-
ferences between linear space LS and signal
space with algebraic lattice properties L(v, A).
Inlinear space the interaction of desired and in-
terfering signals is always go with loss (or dis-
tortion) of contained information. On the con-
trary, lattice absorption property sAn(svn)=s
allows to consider practically “ideal” interac-
tion of desired and interfering signals in a
space with algebraic lattice properties. The
invariance of SP guality indexes in the signal
space with algebraic lattice properties while
solving unknown non-random parameters esti-
mation problem, detection-discrimination and
filtration problems is shown in articles
[25—27] respectively.

Thus, in this signal space there is a principal
possibility of processing of desired signals un-
der interferences (noises) background of with
comparatively small information loss, regard-
less of parametric and nonparametric prior un-
certainty conditions. The last circumstance
makes the application of SP in a space with alge-
braic lattice properties quite attractive for
solving electronic counter-counter-measures
(ECCM) problem on extreme interference envi-
ronment.
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PoarnaHyTi ocHOBHI HANPAMKM ROCHiAKeHbL B paMKax
nporpaM# AreHTCTBa HOpPOBIAHMX OGOPOHHAX HOCHiAHH-
uskux upocekris (Defense Advanced Research Projects
Agency) “Ilepeaada indopmanii B yMonax eKcTpeManILEOTo
BHKOPUCTARHA pafiogacToTHOro crexrpa”. 3po6reHo crac-
NuE oraAx BPiAOMHX Ta HepCHeKTHBHHX METOAIB 3aXMCTy
pajioeleXTPOHHUX CHCTEM B YMOBaX BIIABY iHTeHCHBHHX
aaBaj. BiziMiveHo MepcneKTHBHICTE BAKOPHCTAHHSA METOAIB
06po6KM CHIrHaNiB B NMPOCTOpi CHrHANIN i3 BJAACTHBOCTAMH
anrebpaiunoi pemriTky® ANA BUpimieHHs mpobreMu 3axHCTy
PAAIOENEKTPOHHUX CHCTEM B YMOBAX BUJIMBY iHTeHCHABHHX
nepelKon.

Kawovosi croea: pagioeneKTpoHHMHE 3aXMCT pafioenek-
TPOHHUX CHCTeM, 3aBafloBa oO6CTaHOBKA, AKTHBHA 3ABajA,
ANRIANEL TRALILWIRE T, YOPSoRa CRTHUTIE, TPOTTIP ¢aT-
HaJiB i3 BIaCTHBOCTSME ajre6paiyHol pemiTKH.

PaccMoTpeHB! OCHOBHEle HalpaBJeHHA HCCIefO0BAaHMH B
PaMKax DporpaMMbi ATeHTCTBa NepefoBuIX 060POHHBIX NC-
caegopatenbekunx npoektos (Defense Advanced Research
Projects Agency) “Ilepenayua BHGPOPMAHHA B YCIOBHAX 3KC-
TPeMaJbHOr0 MCHOJIb3OBAHUA PARKOYACTOTHOTO cIeKTpa”.
Crenal KpaTKHi 0630p R3BeCTHRIX U NePCIeKTHBHRIX METO-
JOB 3AIIATH PaJHO3/eKTPOHHLIX CHCTEM B YCJOBHUSX BO3-
JeiicTBHSA WHTEHCUBHLIX NoMeX. OTMeyaeTcs MepcleKTHBH-
OCThL NpPMMEeHeHHs MeTORZ0B O6GpaboTKHM CHrHAJNOB B Npo-
CTPaHCTBe CHTHAJIOB CO CBOMCTRaMH ajire6panueckoi peuer-
KA ANA pemleHud NpobieMbl 3alIUTH PAXMOINEKTPOHHBIX
CHCTEM B YCJIOBUAX BO3AEHCTBHA MHTEHCUBHBIX [IOMEX.

Knovesvie cnrosa: paanodNeKTPOHHAs 3AlUMTA DALHO-
9JIeKTPOHHBIX CHCTEeM, [ToMeXoBasd o6CTAHOBKA, aKTHBHAS
noMexa, anpuopHas HeonpejeleHHocTs, o6paGoTka curaa-
JIOB, NPOCTPAHCTBO CHTHAJOB CO CBOHCTBAMM anrebpanyec-
KOif pelieTKH.
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