УДК 661.657.636:544.3-971.2

В. А. Муханов, П. С. Соколов, О. Бринза, Д. Врель, В. Л. Соложенко* (г. Париж)

* vladimir.solozhenko@univ-paris13.fr

Самораспространяющийся высокотемпературный синтез субфосфида бора В₁₂Р₂

Предложены два новых способа получения нанопорошков субфосфида бора $B_{12}P_2$ методом самораспространяющегося высокотемпературного синтеза. Спеканием этих порошков при 5,2 ГПа и 2500 К получены плотные поликристаллические образцы $B_{12}P_2$ с микротвердостью $H_V = 35(3)$ ГПа и стабильностью на воздухе до 1300 К.

Ключевые слова: субфосфид бора, синтез, высокая температура, высокое давление, твердость.

Икосаэдрический субфосфид бора $B_{12}P_2$ является перспективным сверхтвердым материалом с теоретической твердостью $H_V = 37$ ГПа [1] и высокой (до 1300 К на воздухе) термической и химической стабильностью [2]. Он может быть получен тремя методами: (1) термическим разложением фосфида бора ВР при температурах выше 1500 К в восстановительной атмосфере [3]; (2) прямым взаимодействием элементов при T > 1600 К под давлением аргона ~ 50 бар [4]; и (3) реакцией между галогенидами бора и фосфора [5]. Монокристаллы $B_{12}P_2$ могут быть выращены как путем кристаллизации из раствора-расплава [5], так и газотранспортными реакциями [3, 5]. Однако технологии, основанные на упомянутых методах, сложны и трудозатратны, что препятствует практическому применению субфосфида бора.

Ранее авторами был разработан метод получения фосфида бора BP, свободного от примеси $B_{12}P_2$, путем взаимодействия фосфата бора и магния по реакции

$$BPO_4 + 4Mg = BP + 4MgO \tag{1}$$

в режиме самораспространяющегося высокотемпературного синтеза (СВС) [6]. В результате протекания побочных реакций и частичного окисления кислородом воздуха выход целевого продукта (ВР) относительно невысок (~35 % от теоретического) что, однако, компенсируется простотой метода и доступностью используемых реагентов.

Целью настоящей работы было создание эффективных CBC-методов получения однофазного субфосфида бора путем развития экспериментальных подходов, предложенных в [6]. В результате проведенных исследований были предложены две схемы синтеза B₁₂P₂.

Схема 1. Поставленную цель достигали изменением стехиометрии прекурсора – вместо BPO₄ использовали борофосфатное стекло состава $B_{12}P_2O_{23}$, полученное упариванием смеси борной (Alfa Aesar, 99,8 %) и ортофосфорной (Alfa Aesar, 85 % aq. sol.) кислот в дистиллированной воде (весовое соотно-

© В. А. МУХАНОВ, П. С. СОКОЛОВ, О. БРИНЗА, Д. ВРЕЛЬ, В. Л. СОЛОЖЕНКО, 2014

ISSN 0203-3119. Сверхтвердые материалы, 2014, № 1

шение – 3,2:1:2,1) при 520 К с последующим прокаливанием продукта в муфельной печи при 770 К. Смесь порошков свежеприготовленного $B_{12}P_2O_{23}$ (-200 мкм) и металлического магния (Alfa Aesar, 99,8 %, -325 mesh), взятых в весовом соотношении 1:1, прессовали в стальной пресс-форме при усилии 10 т в таблетки диаметром 20 мм и высотой 4 мм (весом ~ 2,2 г). Реакцию проводили в динамической атмосфере аргона (давление – ~ 1 бар, расход – 50 см³/с) в установке CBC оригинальной конструкции, описанной ранее [7]. Поджигание таблеток, лежащих на подложке из прессованного MgO, осуществляли с помощью ленты из графитовой фольги, нагреваемой переменным электрическим током; при этом количество тепла, выделяемого на ленте, было сопоставимо с тепловым эффектом реакции (2). По оценкам авторов температура в ходе реакции была не ниже 1300 К. После сжигания вес таблеток уменьшался на ~ 6 % (часть вещества уносилась из реакционного объема током аргона). Уравнение протекающей реакции может быть записано в виде

$$B_{12}P_2O_{23} + 23Mg = B_{12}P_2 + 23MgO.$$
 (2)

После кипячения полученных спеков в 20 %-ной соляной кислоте в течение 30 мин образуется остаток коричневого цвета, представляющий собой $B_{12}P_2$ с содержанием ВР не более 3 % (по объему) (рис. 1, *a*). Наличие небольшой примеси ВР может быть объяснено тем, что исходное борофосфатное стекло содержало некоторое количество кристаллического ВРО₄. Выход $B_{12}P_2$ составил 51 % от теоретического по реакции (2).

Рис. 1. Дифрактограммы отмытых образцов субфосфида бора $B_{12}P_2$, полученных методом CBC по схемам 1 (*a*) и 2 (*б*); стрелками указаны положения дифракционных линий 111 и 200 BP (*a*).

В контрольных экспериментах аналогичные таблетки отжигали 20 мин при 870 К в закрытом тигле в муфельной печи. После обработки продуктов реакции соляной кислотой выход $B_{12}P_2$ составил 65 % от теоретического по реакции (2), но при этом доля ВР возросла до ~10 % (по объему).

Схема 2. Поставленная цель достигалась изменением стехиометрии восстановителя при восстановлении фосфата бора по реакции

$$2BPO_4 + 5MgB_2 + 3Mg = B_{12}P_2 + 8MgO.$$
 (3)

В качестве восстановителя использовали смесь (3:1 по весу) диборида магния (Alfa Aesar, 99 %, -100 mesh) и металлического магния (Alfa Aesar, 99,8 %; -325 mesh). Реакцию СВС проводили по методике, аналогичной использованной в схеме 1. Уменьшение веса таблеток по завершении экспери-

www.ism.kiev.ua/stm

ментов составляло ~3 %. После получасового кипячения спеков в 20 %-ной соляной кислоте, полученный продукт светло-серого цвета представлял собой однофазный $B_{12}P_2$ (см. рис. 1, δ). Выход субфосфида бора составлял 76 % от теоретического по реакции (3). Аналогичные таблетки при отжиге в муфельной печи при 870 К в течение 20 мин в закрытом тигле после отмывки 20 % соляной кислотой позволяют получить $B_{12}P_2$ с выходом 71 % от теоретического, и доля ВР возрастает при этом до 16 % (по объему).

Относительно невысокий (50–75 %) выход целевого продукта по реакциям (2) и (3) обусловлен протеканием ряда побочных реакций (образование фосфида, диборида и боратов магния, оксидов бора и фосфора и др.), что, однако, как и в случае ВР [6], компенсируется простотой метода и доступностью используемых реагентов.

Рентгенофазовый анализ полученных продуктов проводили на дифрактометре Equinox 1000 Inel (излучение CuK α_1 , $\lambda = 1,540598$ Å). Параметры решетки образцов субфосфида бора, полученных по схемам 1 и 2, составляют a = 5,985(3) Å, c = 11,842(9) Å и a = 5,988(3) Å, c = 11,836(7) Å соответственно, что хорошо согласуется со значениями, приведенными в [4] для B₁₂P₂ со стехиометрией близкой к идеальной. Размеры областей когерентного рассеяния (OKP), рассчитанные из уширений дифракционных линий по методу Вильямсона-Холла [8], составили 23–30 нм независимо от схемы получения.

Изучение морфологии порошков $B_{12}P_2$ было проведено на сканирующем электронном микроскопе высокого разрешения Supra 40VP Carl Zeiss. Согласно полученным данным порошки $B_{12}P_2$ состоят из изотропных зерен с размером 50–90 нм независимо от схемы получения (рис. 2). Сопоставление этих значений с размерами OKP позволяет сделать вывод о том, что наблюдаемые в электронном микроскопе зерна $B_{12}P_2$ (см. рис. 2) представляют собой агрегаты, состоящие из нескольких кристаллитов. Локальный элементный анализ отмытых порошков субфосфида бора проводили на электронном микроскопе Leica S440 с энергодисперсионным спектрометром EDS Princeton Gamma-Tech. Согласно полученным данным для всех образцов отношение B:P составляет 6:1, а суммарное содержание примесей (Mg, O, Cl, Al и Si) не превышает 0,7 % (ат.).

Рис. 2. Микрофотографии (×50000) отмытых образцов субфосфида бора $B_{12}P_2$, полученных методом CBC по схемам 1 (*a*) и 2 (δ).

Фазовая чистота полученных образцов субфосфида бора была также подтверждена методом комбинационного рассеяния (КР). Спектры КР возбуждали He-Ne лазером ($\lambda = 632,8$ нм, размер пучка – 10 мкм) и регистрировали с помощью микроспектрометра Horiba Jobin Yvon HR800. Спектры КР отмы-

ISSN 0203-3119. Сверхтвердые материалы, 2014, № 1

тых продуктов реакции представлены на рис. 3. Все наблюдающиеся линии соответствуют $B_{12}P_2$ [9], и только на некоторых спектрах образцов, полученных по схеме 1, присутствует слабая линия при ~ 810 см⁻¹, характерная для ВР [6] (см. рис. 3, *a*).

Рис. 3. Спектры комбинационного рассеяния отмытых образцов субфосфида бора $B_{12}P_2$, полученных методом CBC по схемам 1 (*a*) и 2 (*б*); стрелкой указано положение наиболее интенсивной линии BP (810 см⁻¹); на вставках приведены оптические изображения поверхности порошков (×100).

Изучение химических свойств синтезированных порошков $B_{12}P_2$ и BP показало, что при кипячении они устойчивы к действию как 30 %-ной соляной, так и 30 %-ной азотной кислот, и медленно растворяются в смеси (3:1 по объему) 37 % HCl и 68 % HNO₃, в то время как бор и фосфор (как красный, так и черный) растворяются в 20 %-ной азотной кислоте уже комнатной температуре. При кипячении смеси порошков $B_{12}P_2$ и BP (9:1 по весу) в 96 %-ной серной кислоте в течение 30 мин растворяется ~ 17 вес. % образца, при этом BP растворяется полностью, что позволяет использовать эту методику для очистки $B_{12}P_2$ от небольших примесей BP. В концентрированных (> 80%) растворах щелочей (в частности, NaOH) $B_{12}P_2$ и BP медленно растворяются при температурах выше 520 К.

Спекание отмытых порошков $B_{12}P_2$ проводили при 5,2 ГПа и 2500 К в течение 3 мин в высокотемпературной ячейке аппарата высокого давления типа "тороид". Детали эксперимента были описаны ранее [10]. Полученные образцы представляли собой плотный однофазный беспористый поликристаллический субфосфида бора с параметрами решетки a = 5,992(9) Å, c = 11,859(3) Å и размерами зерен 1–2 мкм. Твердость этих поликристаллов, измеренная методом Виккерса на микротвердомере Duramin-20 (Struers) при нагрузке до 20 H и времени индентирования 10 с, составила 35(3) ГПа, что практически совпадает с теоретическим значением $H_V = 37$ ГПа [1], рассчитанным для $B_{12}P_2$ в рамках термодинамической модели твердости [11].

Термическую стабильность субфосфида бора в диапазоне температур 300– 1500 К изучали методами термогравиметрии (TG) и дифференциальной сканирующей калориметрии (DSC) на термоанализаторе Netzsch STA 409 PC в режиме непрерывного нагревания со скоростью 10 К/мин в потоке воздуха (расход – 30 см³/мин) с использованием тарельчатых держателей из оксида алюминия. Результаты термоаналитического изучения нанопорошка $B_{12}P_2$ и плотного материала, полученного его спеканием при высоких давлениях и температурах, представлены на рис. 4. Нанодисперсный субфосфида бора стабилен на воздухе до 900 K, а при более высоких температурах наблюдается его окисление до B_2O_3 и BPO₄, сопровождающееся испарением части образующегося оксида бора (III). В аналогичных условиях плотный $B_{12}P_2$ начинает окисляться лишь при температурах выше 1300 K.

Рис. 4. Кривые TG–DSC нанопорошка $B_{12}P_2$, синтезированного методом CBC по схеме 2 (*a*), и компактного поликристаллического $B_{12}P_2$, полученного спеканием при 5,2 ГПа и 2500 К (δ).

выводы

Однофазные нанопорошки субфосфида бора $B_{12}P_2$ были получены методом самораспространяющегося высокотемпературного синтеза в результате восстановления фосфата бора смесью MgB₂ и металлического магния, и борофосфатного стекла состава $B_{12}P_2O_{23}$ металлическим магнием, с последующей химической очисткой продуктов реакций. Предложенная методика отличается простотой реализации, высокой эффективностью, низкой себестоимостью продукта и возможностью организации его крупномасштабного производства. Синтезированные порошки $B_{12}P_2$ были изучены методами рентгенофазового анализа, электронной микроскопии, спектроскопии комбинационного рассеяния и термического анализа. Спеканием этих порошков при 5,2 ГПа и 2500 К были получены высокоплотные поликристаллические образцы с микротвердостью по Виккерсу 35(3) ГПа и высокой (до 1300 К) термической стабильностью на воздухе.

Авторы благодарны Т. Шаво (Т. Chauveau), А. Таллеру (А. Tallaire) и Т. Б. Шаталовой за помощь в проведении рентгенофазового анализа, КР спектроскопии и термического анализа, а также выражают признательность Agence Nationale de la Recherche (грант ANR-2011-BS08-018) и DARPA (грант W31P4Q1210008) за финансовую поддержку.

Запропоновано два нових способи отримання нанопорошків субфосфіда бору ($B_{12}P_2$) методом високотемпературного синтезу. Спіканням цих порошків при 5,2 ГПа і 2500 К отримано щільні полікристалічні зразки $B_{12}P_2$ з мікротвердістю $H_V = 35(3)$ ГПа і стабільністю на повітрі до 1300 К.

Ключові слова: субфосфід бору, синтез, висока температура, високий тиск, твердість.

Two new methods to produce nanopowders of $B_{12}P_2$ boron subphosphide by self-propagating high-temperature synthesis have been proposed. Bulk polycrystalline $B_{12}P_2$ with microhardness of $H_V = 35(3)$ GPa and stability in air up to 1300 K has been prepared by sintering these powders at 5.2 GPa and 2500 K.

Keywords: boron subphosphide, synthesis, high temperature, high pressure,

hardness.

ISSN 0203-3119. Сверхтвердые материалы, 2014, № 1

31

- 1. Mukhanov V. A., Kurakevych O. O., Solozhenko V. L. Thermodynamic model of hardness: particular case of boron-rich solid // Сверхт. материалы. 2010. № 3. С. 33–45.
- Peret J. L. Preparation and properties of the boron phosphides // J. Am. Ceram. Soc. 1964. 47. – P. 44–46.
- Slack G. A., McNelly T. F., Taft E. A. Melt growth and properties of B₆P crystals // J. Phys. Chem. Solids. – 1983. – 44. – P. 1009–1013.
- Yang P., Aselage T. L. Synthesis and cell refinement for icosahedral boron phosphide B₁₂P₂ // Powder Diffraction. – 1995. – 10. – P. 263–265.
- Burmeister R. A. Jr., Greene P. E. Synthesis and crystal growth of B₆P // Trans. Metall. Soc. AIME. – 1967. – 239. – P. 408–413.
- 6. Муханов В. А., Соколов П. С., Ле Годек Я., Соложенко В. Л. Самораспространяющийся высокотемпературный синтез фосфида бора // Сверхт. материалы. 2013. № 6. С. 113–117.
- Vrel D., Girodon-Boulandet N., Paris S., Mazué J. F. et al. A new experimental setup for the time resolved x-ray diffraction study of self-propagating high-temperature synthesis // Rev. Sci. Instrum. – 2002. – 73. – P. 422–428.
- Williamson G. K., Hall W. H. X-ray line broadening from filed aluminum and wolfram //Acta Metall. – 1953. – 1. – P. 22–31.
- Shelnutt J. A., Morosin B., Emin D. et al. Raman spectroscopy of boron carbides and related boroncontaining materials // AIP Conf. Proc. – 1986. – 140. – P. 312–324.
- 10. *Муханов В. А., Соколов П. С., Соложенко В. Л.* О плавлении карбида бора В₄С под давлением // Сверхт. материалы. 2012. № 3. С. 86–89.
- Муханов В. А., Куракевич О. О., Соложенко В. Л. Взаимосвязь твердости и сжимаемости веществ с их строением и термодинамическими свойствами // Сверхт. материалы. – 2008. – № 6. – С. 10–22.

LSPM–CNRS, Université Paris Nord, Villetaneuse, France Поступила 22.11.13