Одержання, структура, властивості

УДК 539.216:621.762

О. Н. Кайдаш*, В. З. Туркевич, В. В. Ивженко, П. П. Иценко, В. Н. Ткач Институт сверхтвердых материалов им. В. Н. Бакуля НАН Украины, г. Киев, Україна

*ivv@ism.kiev.ua

Влияние *in situ* образованных боридов TiB₂–VB₂ на структуру и свойства горячепрессованной керамической системы B₄C–(TiH₂–VC)

Методом реакционного горячего прессования получены композиты системы $B_4C-(5-15 \%)(TiH_2-VC))$, установлены особенности их структуры и измерены физико-механические параметры. Полученные плотные дисперсноупрочненные материалы с высоким пределом прочности при изгибе ($R_{bm} = 420-580 \text{ MIIa}$) и повышенной трещиностойкостью ($K_{Ic} = 4, 1-4, 8 \text{ MIIa} \cdot m^{1/2}$) при сохранении твердости HKN = 19–20 ГПа перспективны для использования в условиях жесткого абразивного износа.

Ключевые слова: композиционный материал, B₄C, TiH₂, VC, предел прочности при изгибе, твердость по Кнупу, трещиностойкость.

введение

Высокая твердость B₄C-керамики, превышающая 20 ГПа, позволяет использовать ее в качестве износостойкого поликристаллического материала, обладающего высокой термической стабильностью и химической инертностью [1, 2]. Практическое применение таких материалов в значительной степени ограничивает их повышенная хрупкость и высокая температура спекания, необходимая для получения близкой к теоретической плотности. Материалы с относительной плотностью более 97 % получают при использовании добавок металлов, их оксидов, карбидов или боридов. Добавки металлов не обеспечивают повышение уровня механических характеристик. Использование боридов, либо добавленных непосредственно, либо образующихся в процессе спекания, улучшает свойства материалов. Введение диборидов переходных металлов активирует процесс спекания, замедляет рост зерен, снижает склонность к двойникованию, увеличивает прочность и трещиностойкость спеченных композиций [2].

© О. Н. КАЙДАШ, В. З. ТУРКЕВИЧ, В. В. ИВЖЕНКО, П. П. ИЦЕНКО, В. Н. ТКАЧ, 2018

Особенности взаимодействия B_4C с боридами переходных металлов IV–VI групп Периодической системы и диаграммы состояния квазибинарных систем изучены в работах С. С. Орданьяна [3]. Общим для этих систем является то, что они описываются эвтектическими диаграммами состояния (табл. 1). Это создает условия образования жидких растворов, существующих в широком концентрационном и температурном интервале, при температуре, выше, чем температура эвтектики. Кроме этого, растворение переходных металлов в решетке карбида бора приводит к образованию тройных боридов ($B_{12-n}Me_n$)C₃ и заметному росту микротвердости до 50–77 ГПа [4].

Система	Доля MeB ₂ в эвтектике, %		<i>Т</i> _{эвт} , Соедине-		<i>Т</i> _{пл} ,	Δ <i>Η</i> ,	
B ₄ C–MeB ₂	объемная	молярная	°C	ние	°C	кДж/моль	
B_4C	-	_	_	B_4C	2447	70,0	
B ₄ C-TiB ₂	20	26	2197	TiB ₂	3217	280,0	
B_4C – ZrB_2	20	24	2277	ZrB_2	3247	314,0	
B_4C-VB_2	35	46	2167	VB_2	2747	142,4	
B_4C-NbB_2	35	36	2247	NbB ₂	2997	174,6	
B_4C-TaB_2	27	32	2367	TaB_2	3097	217,7	
B ₄ C–CrB ₂	63	70	2147	CrB ₂	2217	125,6	

|--|

Примечание. $T_{_{\rm ЭВТ}}$ – температура эвтектики; $T_{_{\rm ПЛ}}$ – температура плавления; ΔH – теплота образования.

Достаточно хорошо изученной является система B_4C-TiB_2 [5–7], по остальным материалам встречаются единичные публикации. Свойства керамических материалов систем B_4C-MeB_2 приведены в табл. 2.

Состав, % (по массе)	<i>HV</i> , ГПа	<i>R_{bm}</i> , МПа	<i>К</i> _{Ic} , МПа⋅м ^{1/2}	Литература
$B_4C-15TiB_2-TiO_2-C$	_	866	3,2	[5]
$B_4C-43TiB_2$	24	506	9,4	[7]
$B_4C-11VB_2*$	25	500	5–6	[8]
B ₄ C–CrB ₂	_	630	3,5	[9]
$B_4C-20ZrB_2*$	32	498	6,3	[10]
$B_4C-10ZrB_2*$	25	400	_	[11]
B ₄ C-10TiC-Mo	25	695	4,3	[12]
B_4C - TiB_2 - W_2B_5	23	695	3,9	[13]
$B_4C-WC-W_2B_5$	_	453	8,7	[14]

Таблица 2. Свойства современных материалов систем B₄C-MeB₂

*Состав в % (по объему).

В настоящее время поиск перспективных добавок для разработки композиционных материалов и оптимизации технологии их производства продолжается. По мнению авторов, бориды переходных металлов, образующиеся в процессе спекания, имеют значительный потенциал для улучшения прочностных характеристик материалов на основе карбида бора. Целью работы является изучение влияния добавок титана (в виде TiH₂) и/или ванадия (в виде VC) в B₄C-керамику на состав, особенности структуры и уровень физикомеханических характеристик композитов с керамической матрицей (CMC-ceramic matrix composite).

методика

Для исследования выбрали порошок B₄C производства Донецкого завода химреактивов, основные характеристики которого представлены в табл. 3. По результатам MPCA, порошок B₄C содержит бор и углерод в соотношении B:C = 3:1, т. е. содержание углерода в соединении повышено по сравнению со стехиометрическим составом. Содержание кислорода не превышает 0,8 %¹. Размер частичек порошка находится в диапазоне 0,3–0,5 мкм (рис. 1). В качестве модифицирующих добавок использовали порошки гидрида титана (ТУ 10-5–76) и/или карбида ванадия (ТУ 6-09-03-5–75). Это порошки с размером частиц 5–12 мкм (см. рис. 1). Смешивание и размол смесей B₄C с 5–15 % добавок проводили в шаровой мельнице, в среде спирта, размольными телами из B₄C на протяжении 24–48 ч. Для сравнения изготовили также образцы поликристаллического B₄C.

таблица 3. Основные характеристики порошка карбида бор
--

Рис. 1. Микрофотографии частиц исходных порошков: B₄C (a), VC (б), TiH₂ (в).

Горячее прессование проводили в графитовой пресс-форме на прессе с индукционным нагревом, сконструированном в ИСМ НАН Украины. Из го-

¹ Здесь и далее по тексту состав приведен в % (по массе).

рячепрессованных призм 60×60×8 мм после шлифования вырезали образцы для испытаний.

Фазовый состав композитов изучали на рентгеновском дифрактометре ДРОН-2 в фильтрованном Си $K\alpha$ -излучении. Съемку проводили с вращением образца, в дискретном режиме с шагом сканирования 0,05° и экспозицией в каждой точке в течение 7 с [15]. В качестве эталонов использованы данные международной картотеки [16].

Фрактографические исследования поверхности изломов проводили на сканирующем растровом электронном микроскопе Zeiss EVO 50 XVP фирмы "Carl Zeiss", Германия. Рельеф поверхности изучался с использованием детектора SE 1 (детектор вторичных электронов (контраст рельєфа)), а распределение фаз получали с использованием детектора SZ BSD (детектора фазового контраста).

Определение предела прочности при изгибе R_{bm} проводили методом трехточечного изгиба на 7–9 призматических образцах размером 3,5×5×40 мм при расстоянии между опорами 30 мм. Скорость нагружения составляла 6,5·10⁻⁵ м/с. Измерение твердости по Кнупу *НКN* (при нагрузке 5 H) проводили на цифровом микротвердомере четырехгранной алмазной пирамидкой с ромбическим основаним. Определение трещиностойкости (вязкости разрушения K_{lc}) проводили по методу Еванса-Чарльза по длине радиальных трещин с углов отпечатка индентора Виккерса.

ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Изменение состава композитов в процессе горячего прессования показано в табл. 4. Поликристаллический B₄C по данным микрорентгеноспектрального анализа (MPCA) содержит повышенное количество углерода и до 0,7 % кислорода. При этом в середине зерен B₄C наблюдали меньше (0,2 %) кислорода, а на поверхности – больше (до 2 %). Вероятно, частицы исходного порошка покрыты слоем B₂O₃. Оксид бора в восстановительной атмосфере (в присутствии свободного углерода) при 1227 °C образует летучий B₂O₂, что положительно влияет на очищение поверхности порошка B₄C от кислорода [17]:

$$C + B_2 O_3 \to B_2 O_2 \uparrow + CO \uparrow.$$
(1)

Таблица 4. Состав исходных смесей и фазовый состав композитов В₄С–МеВ₂, полученных горячим прессованием при *T* = 2200 °С и *p* = 30 МПа в течение 0,5 ч

Исходная смесь,	Содержание фаз в горячепрессованном композите*,
% (по массе)	% (по массе)
B_4C	$99B_4C-1C_{cbod}$
B ₄ C-15TiH ₂	$80B_4C-16TiB_2-4C_{cbod}$
$B_4C-15VC$	82,5B ₄ C-9VB ₂ (I)-5,5VB ₂ (II)-3С _{своб}
B ₄ C-7,5TiH ₂ -7,5VC	83B ₄ C-13(Ті, V)B ₂ -4С _{своб}

*Оценка по данным рентгеновского анализа.

Расчетная формула соединения может быть записана как $B_{3,87}CO_{0,03}$. Повышенное содержание углерода подтверждено рентгеновским структурным анализом, поскольку горячепрессованный ромбоэдрический B_4C имеет сниженные параметры решетки a = b = 0,5604 нм, c = 1,2070 нм (табл. 5) по сравнению с $B_{13}C_2$, где a = b = 0,5617 нм, c = 1,209 нм [18]. Кроме того, на рентгенограмме появляется слабая линия свободного углерода (рис. 2), однако его содержание в полученном поликристаллическом материале не превышает 1 %.

	Параметры решетки, нм					
Состав композита	B ₄ C		MeB ₂		c/a	Фаза
	a = b	С	a = b	С		
В ₄ С (исходный порошок)	0,5604	1,209	-		2,16	B_4C
В ₄ С (монокристаллический)	0,5604	1,207	-	_	2,15	B_4C
B ₄ C-15TiB ₂	0,5610	1,212	-	_	2,16	B_4C
(исходный состав B ₄ C–15TiH ₂)	_	_	0,3040	0,3250	1,07	TiB_2
$B_4C-15VB_2$	0,5595	1,206	_	-	2,16	B_4C
(исходный состав B ₄ C–15TiH ₂)	-	_	0,3018	0,3210	1,06	$VB_{2}(I)$
	-	_	0,3018	0,3110	1,03	$VB_{2}(II)$
B ₄ C-15(Ti,V)B ₂ (исходный	0,5596	1,206	_	-	2,16	B_4C
состав B ₄ C-7,5VC-7,5TiH ₂)	_	_	0,2997	0,3068	1,02	(Ti,V)B ₂
B ₄ C [29]	0,5600	1,208	-	-	2,16	B_4C
$B_{13}C_2$ [18]	0,5617	1,209	-	-	2,15	$B_{13}C_{2}$
TiB ₂ [25]	-	_	0,3038	0,3220	1,06	TiB_2
TiB ₂ [27]	-	_	0,3024	0,3220	1,07	TiB_2
VB ₂ [30]	_	-	0,2993	0,3028	1,01	VB_2
VB ₂ [31]	_	-	0,2998	0,3057	1,02	VB_2
VB ₂ [27]	_	_	0,3006	0,3056	1,02	VB_2

Таблица 5. Параметры решетки фаз в горячепрессованных СМС-композитах В₄С–МеВ₂ в сравнении с литературными данными

Рис. 2. Типичные дифрактограммы композитов, полученных горячим прессованием при T = 2200 °С и p = 30 МПа: B₄C (*I*), B₄C–15TiB₂ (*II*), B₄C–15(Ti, V)B₂ (*III*), B₄C–15VB₂ (*IV*); B₄C (\circ),TiB₂ (\Box), C (*), VB₂ (Δ), (Ti, V)B₂ (\blacktriangle).

Все остальные полученные в этой работе материалы относятся к классу СМС-композитов. После горячего прессования смеси B₄C-15TiH₂ получают плотный композит ($\Pi = 0$ %), состоящий из зерен карбида бора, на границах которого присутствует соединение титана с гексагональной решеткой типа AlB₂ и некоторое количество свободного углерода (см. табл. 4). Это соединение – твердый раствор на основе диборида титана (оксикарбоборид), т. е. фактически это TiB₂, в котором часть бора изоморфно замещена углеродом и кислородом (табл. 6). Присутствие карбида титана в полученных при T = 2200 °С материалах рентгенографически не выявлено. Содержание бора в соединении В₄С повышается, о чем свидетельствует возрастание периодов решетки до a = 0,5610 нм ($\Delta a = 0,006$ нм), c = 1,212 нм ($\Delta c = 0,003$ нм) (см. табл. 5). Это можно объяснить частичным удалением углерода из структуры карбида бора. Можно предположить, что формирование структуры при реакционном горячем прессовании происходит следующим образом: при достижении 650 °C гидрид титана диссоциирует с выделением химически активного титана и создает восстановительную атмосферу, очищающую поверхность порошков от кислорода и свободного углерода и способствующую лучшему уплотнению:

$$TiH_2 \rightarrow Ti + H_2\uparrow.$$
 (2)

No		Содержание элементов,						
	Характеристика фази	% (по массе)						
спектра		В	С	0	Ti	V		
	Композит B ₄ C-15TiB ₂ (см. рис. 3, <i>a</i>)							
2	Межзеренная, ТіВ ₂ -С-О*	32,8	10,0	3,0	54,2	-		
3	Межзеренная, ТіВ ₂ -С-О*	31,5	11,8	2,0	54,6	-		
6	Основная (матричная), B ₄ C-O-Ti*	71,7	26,5	1,4	0,4	-		
7	Основная (матричная), B ₄ C-O-Ti*	76,0	22,2	1,3	0,6	-		
Композит B ₄ C-15VB ₂ (см. рис. 3, б)								
1	Межзеренная, VB2-C-O-Ti(I)*	25,8	2,4	5,0	0,9	66,0		
2	Межзеренная, VB2-C-O-Ti(I)*	33,0	3,5	6,1	0,8	56,6		
4	Межзеренная, VB ₂ –С–О–Ті (II)*	41,4	6,1	5,2	1,0	46,4		
5	Межзеренная, VB ₂ –С–О–Ті (II)*	39,7	2,7	3,5	1,3	52,9		
6	Основная (матричная), B ₄ C-O-Ti-V*	74,2	24,1	1,0	0,1	0,7		
7	Основная (матричная), B ₄ C-O-Ti-V*	75,1	23,5	0,7	0,1	0,7		
Композит B ₄ C-15(Ti, V)B ₂ (см. рис. 3, <i>в</i>)								
2	Межзеренная, (Ті, V)В2-С-О*	27,9	3,9	9,2	17,0	42,1		
3	Межзеренная, (Ті, V)В2-С-О*	37,5	7,3	2,5	27,2	25,6		
4	Межзеренная, (Ті, V)В2-С-О	41,5	8,6	5,8	9,7	34,4		
5	Основная (матричная), B ₄ C-O-Ti-V*	73,4	24,2	2,1	0,2	0,1		
6	Основная (матричная), B ₄ C-O-Ti-V*	68,6	25,9	5,2	0,3	0,2		

Таблица 6. Результаты МРСА горячепрессованых композитов В₄С–15МеВ₂

*Твердый раствор.

Известно, что переходные металлы IV–VI групп Периодической системы элементов взаимодействуют с карбидом бора и образуют карбиды металлов

разного состава [1]. На основе термодинамических расчетов было показано, что протекает медленная твердофазная реакция между Ті и B₄C с образованием преимущественно TiC і TiB₂ [19]. Появление субстехиометрического TiC_x и обогащенного бором B₁₃C₂ при T = 700 °C происходит до образования боридов титана [20; 21] согласно реакции

$$B_4C + Ti \rightarrow Ti C_x + B_{13}C_2. \tag{3}$$

Она происходит благодаря тому, что диффузионная подвижность атомов углерода в Ті намного выше, чем атомов бора [22]. Несмотря на сильные ковалентные связи между атомами в ромбоэдрической структуре карбида бора, углерод диффундирует из него быстрее, чем бор, что приводит к образованию кольцевой структуры в зернах B₄C, где в центре находится обогащенный бором карбид B₁₃C₂ [21]. Далее при T = 800 °C появляются бориды TiB и Ti₃B₄:

$$B_4C + TiC_x \rightarrow TiB + Ti_3B_4 + TiC_{x+}.$$
 (4)

И только при температуре выше 1800 °C образуется наиболее стабильный термодинамически устойчивый диборид титана TiB₂ и выделяется свободный углерод C [20]:

$$B_4C + TiB + Ti_3B_4 + TiC_{x+} \rightarrow TiB_2 + C_{CBOO}.$$
 (5)

В работах К. Niihara в композите B₄C-TiB₂, полученном реакционным спеканием смеси B₄C-TiC, на межзеренных границах B₄C-B₄C, TiB₂-TiB₂, B₄C-TiB₂ зафиксировано осаждение прослоек углерода по плоскостям (002) [23]. На полученной нами рентгенограмме слабая линия свободного углерода также присутствует и его содержание выше, чем в поликристаллическом В₄С (см. табл. 4). Согласно данных микрорентгеноспектрального анализа, в В₄С незначительно (до 0,8 %) растворяется титан (табл. 6). Известно, что взаимная растворимость боридов титана и карбида бора невысока [1, 24]. Повышение диффузионной активности компонентов при взаимной растворимости способствует уплотнению в областях границ раздела контактирующих фаз. Содержание кислорода в композиционном материале возрастает. Так, в зернах В₄С оно составляет 1-1,5 %, а в фазе диборида титана - 3,0 % (см. табл. 6). Известно, что TiB₂ кристаллизуется в гексагональной сингонии (структурный тип AlB₂, C32). В микроструктуре материала диборид титана выглядит как светлая межзеренная фаза в прослойках между зернами и в более крупных скоплениях на стыках зерен. Параметры решетки образовавшегося *in situ* TiB₂: a = 0,3040 нм, c = 0,3250 нм близки к известным из литературы значениям a = 0,3038 нм, c = 0,3220 нм [25]. Присутствие фазы TiB₂ в виде межзеренных включений затрудняет (ингибирует) рост зерна B₄C и препятствует распостранению трещин (рис. 3, а). В дополнение к этому, вновь образовавшаяся фаза диборида имеет наиболее совершенные связи с поверхностью зерен B_4C . Вероятно, именно с этим связан самый высокий рост предела прочности при изгибе R_{bm} на 67 % до 583 МПа и повышение трещино-стойкости K_{Ic} на 64 % до 4,1 МПа м^{1/2} (рис. 4). Прочность полученных авторами материалов превышает на 16 % прочность композитов B₄C-TiB₂, исследованных в [7]. Увеличение размера включений TiB₂ с 0,5 мкм до 2,5 мкм влияет на повышение трещиностойкости K_{Ic} с 2,8 до 3,5 МПа м^{1/2} [5]. В полученном материале размер включений диборида титана больше - 5-10 мкм (см. рис. 3, микроструктура 1), поэтому и K_{1c} возрастает до 4,1 МПа·м^{1/2}. Однако эта величина ниже трещиностойкости 6,0 МПа м^{1/2} полученных авторами аналогичных по составу, но более крупнозернистых материалов [26].

Рис. 3. Микроструктура поверхности шлифов горячепрессованных композитов: B₄C-15TiB₂ (*a*), B₄C-15VB₂ (*b*), B₄C-15(Ti, V)B₂ (*b*).

Смесь B₄C–15VC в процессе горячего прессования превращается в композит B₄C–VB₂ (П = 3 %) (рис. 3, δ). При этом матричная фаза карбида бора обогащается углеродом и кислородом до B_{3,8}CO_{0,03}, в ней также до 0,7 % растворяется ванадий (см. табл. 6). Карбид бора из-за повышенного содержания углерода имеет сниженный период решетки: a = b = 0,5595 нм ($\Delta a = -0,009$ нм), c = 1,206 нм ($\Delta c = -0,003$ нм). В межзеренной фазе *in situ* образуется твердый раствор на основе борида VB₂ в результате протекания реакции

$$VC + B_4C \rightarrow VB_2 + C_{cBOO}.$$
 (6)

Кроме этого, в дибориде ванадия растворяется до 5 % кислорода и до 4 % углерода (см. табл. 6), поэтому соединение можно охарактеризовать как оксикарбоборид ванадия. По результатам рентгеновского фазового анализа наблюдается расщепление пиков (хорошо заметное на углах $2\Theta = 44^{\circ}$ или 62° на рис. 2), что свидетельствует об образовании двух фаз на основе твердого раствора диборида (оксикарбоборида) ванадия одинаковой структуры, обозначенные авторами как VB₂–C–O (I) и VB₂–C–O (II), которые отличаются периодом решетки. Условно их можно разделить на дибориды с большим (см. табл. 6, точки 1, 2) и меньшим (см. табл. 6, точки 4 и 5) содержанием ванадия. Эти фазы имеют одинаковые параметры решетки по осям *а и b*, но отличаются по оси *с* (см. табл. 5). Сильная размытость линий говорит о присутствии небольшого (до 1 %) количества промежуточных фаз, возможно, твердого раствора двух диборидов.

В структуре этого материала также находится до 3 % свободного углерода, что подтверждают результаты рентгеновского фазового анализа (см. табл. 4). С помощью МРСА определили, что углерод присутствует в основном на границах раздела, а кислород сосредоточен преимущественно в межзеренной фазе диборида ванадия. Образование прослойки углерода в межзеренных границах значительно снижает показатели прочности композитов. Для повышения этих характеристик необходимо связывать свободный углерод, добавляя, например, свободный бор в соотношении C: B = 1:3,6 [1]. Очевидно, с этим процессом, наряду с присутствующей остаточной пористостью, связан сравнительно небольшой (только на 15 %) рост прочности и на 50 % большая трещиностойкость (см. рис. 4).

Рис. 4. Предел прочности при изгибе R_{bm} (столбец по центру), твердость по Кнупу *HKN* (справа) и трещиностойкость K_{Ic} (слева) карбида бора и материалов на его основе с 15 %-ной модифицирующей добавкой VC, VC–TiH₂ и TiH₂; соотношение VC:TiH₂ = 1:1.

Смесь B₄C–7,5TiH₂–7,5VC в процессе горячего прессования превращается в плотный B₄C–композит (П = 0). Матричная фаза карбида бора обогащается углеродом и кислородом до B_{3,22}CO_{0,09}, металлы титан и ванадий растворяются в ней мало – 0,2 % (см. табл. 6). По границам зерен карбида бора располагается вторичный мелкодисперсный (размером меньше 1 мкм) твердый раствор на основе диборида (Ti, V)B₂ (см. рис. 3, *в*), образованный вследствие реакций, схематически описанных уравнением

$$B_4C-O + VC + TiH_2 \rightarrow (Ti, V)B_2-C-O + C_{CBO\bar{O}} + H_2\uparrow + CO\uparrow.$$
(7)

VB₂ и TiB₂ – это бориды с гексагональной решеткой подобного структурного типа (AlB₂, C32), близкими периодами решетки и соотношением периодов $c/a \approx 1$. Так, для TiB₂ a = 0,3024 нм, c = 0,3220 нм, a/c = 1,066; а для VB₂ a = 0,3006 нм, c = 0,3056 нм, a/c = 1,017 [27]. Очевидно, что такие дибориды образуют неограниченные твердые растворы. В нашем композите встречаются разные соотношения Ti/V. Например, в точке 2 Ti/V = 30/70, в точке 3 Ti/V = 50/50, в точке 4 Ti/V = 80/20 (см. табл. 6 и рис. 3, e). Вследствие реакционного спекания в этой системе, в отличие от предыдущего состава, образурьтатами рентгеновского анализа – наблюдаются четкие пики диборида титана, в котором полностью растворился диборид ванадия, смещенные вправо, что свидетельствует об уменьшении периода решетки (см. рис. 2, табл. 5). Причем образование твердого раствора сопровождается не только

изменением периода решетки, но и уширением дифракционных пиков (см. рис. 2). В (Ti, V)В₂ также растворяется до 7,3 % углерода и 6,7 % кислорода (см. табл. 6). Как было показано в [28], in situ образованные включения имеют когерентные связи с матрицей карбида бора, и, следовательно, вносят дополнительный вклад в повышение прочности и трещиностойкости. Полученные материалы обладают оптимальным сочетанием: повышенными на 60 % прочностью R_{bm} = 560 МПа и на 76 % трещиностойкостью K_{Ic} = 4,4 МПа·м^{1/2} при наименьшем снижении твердости НКN до 20,4 ГПа (на 17%), что обеспечивается образованием мелкодисперсного легированного диборида (Ti, V)B₂. Такие материалы наиболее перспективны для использования в условиях жесткого абразивного износа.

выводы

В результате изучения особенностей образования структуры и фазового состава материалов на основе карбида бора с добавками TiH₂ и/или VC установлено, что при реакционном горячем прессовании образуются композиты, которые состоят из матричной фазы карбида бора, in situ образованных включений твердых растворов на основе диборидов соответствующих металлов и свободного углерода. Образование и распад твердых растворов Ti-(V)-В-С(-О) в межзеренных границах обеспечивает дисперсное упрочнение композитов за счет появления фаз микронного размера на основе твердых растворов диборидов и имеет значительный потенциал для улучшения прочностных характеристик.

Реакционным спеканием под давлением получены плотные керамические материалы на основе карбида бора с добавками (5-15)(TiH₂-VC) с повышенным пределом прочности при изгибе R_{bm} = 420-580 МПа и высокой трещиностойкостью $K_{\rm Ic} = 4,1-4,8$ МПа·м^{1/2} при сохранении твердости *HKN* = 19–20 ГПа, перспективные для использования в условиях жесткого абразивного износа.

Методом реакційного гарячого пресування отримано композити системи B₄C-(5-15 %)(TiH₂-VC)), встановлено особливості структури й визначено рівень фізико-механічних параметрів. Отримані цільні дисперснозміцнені матеріали з високою границею міцності під час згинання (R_{bm} = 420–580 МПа) і підвищеною тріщиностійкістю ($K_{Ic} = 4, 1-4, 8$ МПа м^{1/2}) при збереженні твердості НКN =19–20 ГПа є перспективними для використання в умовах жорсткого абразивного зносу.

Ключові слова: композиційний матеріал, B₄C, TiH₂, VC, границя міцності під час згинання, твердість по Кнупу, тріщиностійкість.

The peculiarities of the structure and the level of physico-mechanical properties of hot pressed CMC-composite of B_4C -(5–15 wt % (TiH₂-VC)) system. A dense, dispersed strengthening materials with a high bending strength ($R_{bm} = 420-580$ MPa) and increased fracture toughness ($K_{Ic} = 4, 1-4, 8 MPa \cdot m^{1/2}$), while maintaining the hardness HKN 19–20 GPa, have been produced, promising for use in hard abrasive wear.

Keywords: composite material, B_4C , TiH_2 , VC, bending strength, Knoop hardness, fracture toughness.

- 1. Кислый П. С., Кузенкова М. А., Боднарук Н. И., Грабчук Б. Л. Карбид бора. К.: Наук. думка, 1988. – 216 с. 2. *Thevenot F*. Boron carbide – a comprehensive review // J. Eur. Ceram. Soc. – 1990. – N 6. –
- P. 205–225
- 3. Орданьян С. С. О закономерностях взаимодействия в системе B_4C -Me^{IV-VI} B_2 // Огнеvпоры. – 1993. – № 5. – С. 15–17.
- 4. Zachariev Z. New superhard ternary borides in composite // Materials Metal. Ceramic and Polymeric Composites for Various Uses / Ed. J. Cuppoletti. - Croatia: InTech, 2011. - Ch. 3. – P. 61–78.

- Yamada S., Hirao K., Yamauchi Y., Kanzaki S. High strength B₄C–TiB₂ composites fabricated by reaction hot-pressing // J. Eur. Ceramic Soc. – 2003. – 23, N 7. – P. 1123–1130.
- Zorzi J. E., Perottoni C. A., Da Jornada J. A. H. Hardness and wear resistance of B₄C ceramics prepared with several additives // Mater. Lett. 2005. 59, N 23. P. 2932–2935.
- Yue X., Zhao S., Lü P., et al. Synthesis and properties of hot pressed B₄C–TiB₂ ceramic composite // Mater. Sci. Eng. A. 2010. 527, N 27–28. P. 7215–7219.
- 8. Григорьев О. Н., Ковальчук В. В., Запорожец О. И. и др. Получение и физико-механические свойства композитов В₄C–VB₂ // Порошк. металлургия. 2006. № 1/2. С. 59–72.
- Yamada S., Hirao K., Yamauchi Y., Kanzaki S. B₄C–CrB₂ composites with improved mechanical properties // J. Eur. Ceram. Soc. 2003. 23, N 3. P. 561–565.
- 10. Wenbo H., Jiaxing G., Jihong Z., Jiliang Y. Microstructure and properties of B₄C–ZrB₂ ceramic composites // Int. J. Eng. Innov. Technol. (IJEIT). 2013. **3**, N 1. P. 163–166.
- Kim H.-W., Koh Y.-H., Kim H.-E. Reaction sintering and mechanical properties of B₄C with addition of ZrO₂. // J. Mater. Research. – 2000. – 15, N 11. – P. 2431–2436.
- Deng J., Sun J. Microstructure and mechanical properties of hot-pressed B₄C/TiC/Mo ceramic composites // Ceram. Int. 2009. 35, N 2. P. 771–778.
- Deng J., Zhou J., Feng Y., Ding Z. Microstructure and mechanical properties of hot-pressed B₄C/(W,Ti)C ceramic composites // Ceram. Int. – 2002. – 28, N 4. – P. 425–430.
- 14. *Wen G., Li S. B., Zhang B. S., Guo Z. X.* Processing of *in situ* toughened B–W–C composites by reaction hot pressing of B₄C and WC // Scripta Mater. 2000. **43**. P. 853–857.
- Горелик С. С., Расторгуев Л. И., Скаков Ю. А. Рентгенографический и электроннооптический анализ. – М.: Металлургия, 1983. – 200 с.
- JCPDS–International Centre for Diffraction Data. PCPDFWIN v. 1.30 Newtown Square, PA: The Centre, 1997.
- 17. Anders R., Beauvy M. Hot Pressing of Boron Carbide // Ceram. Int. 1983. 10, N 2. P. 49-55.
- Kwei G. H., Morosin B. Structures of the boron-rich boron carbides from neutron powder diffraction: implications for the nature of the inter-icosahedral chains // J. Phys. Chem. – 1996. – 100. – P. 8031–8039.
- Hitoshi T., Taroh A., Tadashi O., Koji K. Synthesis of TiB₂–TiC composites by solid-state reaction between B₄C and Ti Powders // J. Ceram. Soc. Japan. – 1999. – 107, N 11. – P. 1041–1045.
- Shamekh M., Pugh M., Medraj M. Understanding the reaction mechanism of in-situ synthesized (TiC-TiB₂)/AZ91 magnesium matrix composites // Mater. Chem. Phys. – 2012. – 135. – P. 193–205.
- 21. *Zhao H., Cheng Y. B.* Formation of TiB₂–TiC composites by reactive sintering // Ceram. Int. 1999. **25**, N 4. P. 353–358.
- 22. Shen P., Zou B., Jin S., Jiang Q. Reaction mechanism in self-propagating high temperature synthesis of TiC-TiB₂/Al composites from an Al-Ti-B₄C system // Mater. Sci. Eng. A. 2007. 454–455. P. 300–309.
- 23. *Niihara K., Nakahira A., Hirai T.* The effect of stoichiometry on mechanical properties of boron carbide // J. Amer. Ceram. Soc. 1984. **67**, N 1. P. 13–14.
- 24. *Макаренко Г. Н., Марек Э. В.* Твердые материалы на основе карбида бора / Высокотемпературные карбиды. – К.: Наук. думка, 1975. – С. 165–169.
- 25. Самсонов Г. В., Серебрякова Т. И., Неронов В. А. Бориды. М.: Атомиздат, 1975. 376 с.
- 26. Ивженко В. В., Кайдаш О. Н., Сарнавская Г. Ф. и др. Особенности формирования структуры и свойств в системе В₄С-ТіН₂ при реакционном спекании под давлением // Сверхтв. материалы. 2011. № 1. С. 46–58.
- Goldschmidt H. J. Interstitial alloys // Borides. Plenum. New York; Butterworths, London, 1967. – Ch. 6. – P. 254–295.
- Chen M. W., McCauley J. W., LaSalvia J. C., Hemker K. J. Microstructure characterization of commercial hot-pressed boron carbide ceramics // J. Amer. Ceram. Soc. – 2005. – 88, N 7. – P. 1935–1942.
- 29. JCPDS-International Centre for Diffraction Data. PCPDF 35-0787. B₄C.
- Norton J. T., Blumenthal H., Sindeband S. J. Structure of diborides of titanium, zirconium, columbium, tantalum and vanadium // Metall. Trans. – 1949. – 185. – P. 749–751.
- 31. Qi C. J., Jiang Y. H., Liu Y. Z., Zhou R. Elastic and electronic properties of XB₂ (X = V, Nb, Ta, Cr, Mo, and W) with AlB₂ structure from first principles calculations // Ceram. Int. – 2014. – 40, Issue 4. – P. 5843–5851.

Поступила 19.01.18 После доработки 25.01.18 Принята к публикации 25.01.18