ОРИГІНАЛЬНІ ДОСЛІДЖЕННЯ

УДК: 616.331-079.6-36.88

ТАНАТОГЕНЕТИЧЕСКИЕ ПРИЗНАКИ СОСУДИСТО-ТКАНЕВЫХ РЕАКЦИЙ ГОЛОВНОГО МОЗГА ПРИ ГЕМОРРАГИЧЕСКОМ ШОКЕ НА ФОНЕ ОСТРОЙ АЛКОГОЛЬНОЙ ИНТОКСИКАЦИИ

Индиаминов С.И. Самаркандский государственный медицинский институт

Ключевые слова: головной мозг, геморрагический шок, острая алкогольная интоксикация.

Случаи сочетанной патологии, когда наряду с алкогольной интоксикацией выявляются признаки хронических заболеваний или травм, способных быть самостоятельной причиной смерти, представляются наиболее сложными для определения типа танатогенеза [3]. В судебно-медицинской практике часто наблюдается сочетание кровопотери и геморрагического шока (ГШ) с алкогольной интоксикацией. Характерным проявлением интоксикации этанолом являются метаболические расстройства и нарушения проницаемости сосудистой стенки. При этом часто наблюдается выраженный отек головного мозга (ГМ), твердой и мягкой мозговой оболочки со скоплением большого количества жидкости под ней [1]. При острой алкогольной интоксикации (ОАИ) в ГМ у человека выявлены тяжелые расстройства со стороны крови, что выражается в образовании тромбов, а также набухании, склеивании и гемолизе эритроцитов [9]. Массивная кровопотеря на фоне ОАИ приводит к значительной морфофункциональной несостоятельности сосудов ГМ мозга у людей [5]. При смерти от ГШ на фоне ОАИ, несмотря на противошоковую терапию, в ГМ сохраняются тотальный спазм артерий и сосудов МЦР, стаз эритроцитов и лейкоцитов в расширенных внутримозговых венах, резкое обеднение сосудов плазмой, нарушения структуры сосудов, нейронов и нейроглии [4]. Для решения вопроса о роли сосудистых и тканевых структур ГМ в танатогенезе при ГШ на фоне предшествующей кровопотере ОАИ целесообразно применение количественных методов исследования.

Цель исследования. Определить диагностически значимые признаки сосудисто-тканевых реакций разных отделов ГМ и их роль в танатогенезе у лиц, погибших от ГШ на фоне ОАИ.

Материалы и методы исследования. Исследован ГМ от 7 трупов лиц, погибших при клинически установленном диагнозе ГШ, вызванного единичными повреждениями периферических сосудов и других внутренних органов (кроме сердца). Возраст пострадавших от 22 до 39 лет, в одном случае 66 лет. Давность травмы составила от 30-60 минут до 8-9 часов, в одном случае в пределах 36 часов. Во всех наблюдениях этой группы травма сопровождалась внутренней и наружной кровопотерей, при этом объем внутренней кровопотери составил от 1000,0 до 4000,0. Всем пострадавшим, за исключением двух случаев, в стационарах была оказана необходимая квали-

фицированная медицинская помощь. Двоим пострадавшим в возрасте 30 и 66 лет оказана только реанимационная медицинская помощь. Объем инфузионной терапии составлял от 500мл до 9900мл. Во всех случаях в крови у погибших при судебно-химическом исследовании был обнаружен алкоголь в концентрации до 3 %. Гистологическому исследованию подвергнуты: кора больших полушарий ГМ и подлежащее белое вещество (поле 6 по Бродману), стенка III желудочка с участком гипоталамуса и стенка IV желудочка с участком продолговатого мозга. Изучение стенок желудочков проведено на 2 двух уровнях: поверхностный (1 уровень) и глубокий (2 уровень). Применены методы количественного анализа сосудистых и тканевых структур ГМ. Определена относительная площадь перицеллюлярного (ПЦО), периваскулярного (ПВО) отеков и отека белого вещества точечным методом во всех изученных отделах ГМ (в %) с использованием большого квадрата измерительной сетки (25 точек), вычисление соотношения ПЦО/ ПВО. Определена тяжесть поражения (ТП) нейронов - это процентное содержание нейронов, находящихся на необратимой стадии патологических изменений. Полученные данные сопоставлены с результатами изучения отделов ГМ 8 трупов лиц, погибших от ГШ, вызванного в сходных условиях травмы, но без ОАИ.

Результаты исследования и их обсуждение. В коре больших полушарий при ГШ без ОАИ отмечается равная степень выраженности ПЦО и ПВО, что свидетельствует, по-видимому, об одинаковом участии нервных и сосудистых структур в танатогенезе (таблица 1). Обращает на себя внимание высокая степень отечности белого вещества, что отражает высокую степень поражения нервной ткани. При ГШ с предшествующей ОАИ ПЦО выражен достоверно в меньшей, а ПВО в большей степени, чем без ОАИ. В результате этого отчетливо проявляется ведущая роль внутримозговых сосудов в танатогенезе. Следовательно, в условиях алкоголемии с низкой или средней концентрацией этанола в крови возрастает значение сосудистой системы мозга. ТП нейронов в коре полушарий при ГШ без ОАИ составляет 34,2±2,26%, а на фоне ОАИ немного больше $-37,3\pm3,26\%$.

В поверхностном слое гипоталамуса при ГШ без предшествующей ОАИ нервная ткань в большей степени участвует в танатогенезе, чем сосуды, но незначительно, так как соотношение ПЦО/ПВО равно 1,1. При ГШ и ОАИ достоверно возрастает значение ПВО, вследствие этого изменяется роль структур ГМ в танатогенезе,

так как возрастает роль церебральных сосудов. В глубоком слое гипоталамуса при ГШ без ОАИ роль нервной ткани в танатогенезе более значительна, чем сосудистой системы ГМ. При ГШ на фоне ОАИ эти показатели возрастают, но ПВО увеличивается в большей степени, что отражает преимущественное танатогенетическое значение сосудов мозга. При ГШ без ОАИ ТП нейронов в гипоталамусе составляет на обоих уровнях соответственно 26,7±7,54% и 25±4,81%, на фоне ОАИ эти показатели выше, они равны 33,4±4,11% и 33,4±4,54%.

В продолговатом мозге при ГШ без ОАИ отмечается весьма значительное участие в танатогенезе нервной ткани, так как ПЦО/ПВО имеют самые большие значения, как в поверхностном (1 уровень), так и глубоком (2 уровень) слое. При ГШ на фоне ОАИ достоверно увеличивается ПВО, соотношение ПЦО/ПВО становится меньше 1. В результате этого соотношение обоих видов отека на 1 уровне уменьшается в 3,5 раза, а на 2 уровне - в 4,5 раза. Это показывает в такой же степени возрастание роли поражения сосудов ГМ в танатогенезе. В продолговатом мозге ТП нейронов при ГШ без ОАИ в поверхностном слое составляет 17,5±7,9%, в глубоком слое – 23,5±4,33%. При ГШ, протекающем на фоне предшествующей ОАИ, соответственно - $31,3\pm5,6\%$ и $35,3\pm6,17\%$, что превышает значения, полученные в группе лиц только с ГШ.

Проведенное исследование позволило установить изменение роли сосудисто-тканевых структур ГМ в танатогенезе при ГШ на фоне предшествующей кровопотере ОАИ, по сравнению с ГШ без ОАИ. Кровопотеря, приводящая к ГШ, без ОАИ вызывает поражение нервных структур ГМ, особенно в продолговатом мозге и гипоталамусе. Распространенные тяжелые изменения нейронов, особенно в стволе мозга являются характерным признаком быстрой смерти от острой кровопотери [6]. Мозговой тип танатогенеза объясняется высокой чувствительностью нервной ткани к ги-

поксии, связанной с кровопотерей. При ГШ на фоне ОАИ (в крови до 3‰) в танатогенезе преимущественное значение имеет повреждение этанолом внутримозговых сосудов. В наибольшей степени это выражено в коре больших полушарий. В гипоталамусе также проявляется танатогенетическая роль сосудов, но в меньшей мере по сравнению с корой полушарий. Менее всего сосудистый фактор при ГШ и ОАИ наблюдается в продолговатом мозге. Установлено, что при ОАИ удельная площадь нейроцитов в продолговатом мозге не снижается, а, наоборот, возрастает. Высказано предположение, что в этом жизненно важном отделе мозга нервные клетки отличаются большей устойчивостью по отношению к этанолу. Они подвергаются дистрофическим изменениям, однако этот процесс редко доводит их до гибели [10]. По мере нарастания концентрации алкоголя в крови на его присутствие в первую очередь реагируют клетки больших полушарий, затем продолговатого и спинного мозга [2]. По мнению некоторых авторов при опьянении легкой степени установлена меньшая степень поражения головного мозга при кровопотере, что может быть связано с аналгезирующим действием алкоголя [8]. Нами отмечена более высокая ТП нейронов во всех отделах ГМ при ГШ на фоне ОАИ. Тяжесть и распространенность сосудистых и нервно-клеточных изменений соответствуют друг другу [7]. Различная чувствительность нейронов ГМ к кровопотере и алкоголю, различная степень васкуляризации отделов ГМ приводит к преобладанию в танатогенезе сосудистого или нервного компонента. Сравнительное изучение ПЦО и ПВО при сочетанной травме позволило оценить раздельное влияние кровопотери, приводящей к ГШ, и этанола на сосудисто-тканевые компоненты отделов ГМ. Следствием ОАИ при ГШ являются более выраженные изменения как сосудистой системы ГМ, так его нейронов и нейроглии.

Таблица 1

Ропь	сосуписто-тканевых	CTDVICTVD	отпелов Г	Mp.	танатогенезе	ппи	LIII

Отделы ГМ	Область изучения	Вид ГШ	ПЦО	ПВО	Белое вещество	ПЦО / ПВО	Участие в танато- генезе
Большие	Кора	A	8,4±1,66	8,4±1,51	15±0,81	1,0	нейроны сосуды
полушария		Б	3,2±0,69*	12±2,17	5,8±0,61*	0,3	сосуды
	1	A	4,4±0,64	4±0,92	7,2±0,99	1,1	нейроны
Гипо-	уровень	Б	3,6±0,51	9,8±1,22*	4,3±0,93	0,4	сосуды
таламус	2	A	5,2±0,59	3,2±0,55	4±0,71	1,6	нейроны
	уровень	Б	6±0,66	10,2±1,3*	6±0,95	0,6	сосуды
	1	A	4,8±0,55	1±0,4	8,8±0,9	4,8	нейроны
Un a va va va a va va va va va va va va va	уровень	Б	5,5±0,64	7,3±0,9*	6,2±0,88	0,7	сосуды
Продолговатый мозг		A	3,6±0,57	0,8±0,37	8,8±0,69	4,5	нейроны
	2 уровень	Б	6,8±0,75	6,7±0,85*	5,1±0,74*	1	нейроны сосуды

Примечание: $A - \Gamma \coprod$, вызванный кровопотерей без ОАИ; $B - \Gamma \coprod$, вызванный кровопотерей на фоне ОАИ, *— P < 0.05 при сравнении с $\Gamma \coprod$ без алкоголемии.

Выводы

- 1. При ГШ, вызванном массивной кровопотерей, в танатогенезе преобладает поражение нервной ткани ГМ, особенно в продолговатом мозге и гипоталамусе.
- 2. При ГШ с предшествующей кровопотере ОАИ до 3‰ основную роль в танатогенезе играют церебральные сосуды, в первую очередь коры больших полушарий, а также гипоталамуса.

Литература:

- 1. **Бабаханян** Р.В., Петров Л.В. Принципы посмертной диагностики острых отравлений: Пособие для врачей /Под ред. проф. Г.Б.Ковалевского. Санкт-Петербург, 2002. вып.47. 48 с.
- 2. **Билибин** Д.П., Дворников В.Е. Патофизиология алкогольной болезни и наркоманий: Учебное пособие. М.: Изд-во УДН, 1991. 104 с.
- 3. **Богомолова** И.Н., Богомолов Д.В., Пиголкин Ю.И., Букешов М.К., Мамедов В.К. Судебномедицинская диагностика отравлений этанолом и его суррогатами по морфологическим данным. М.: МИА, 2004. С. 438.
- 4. **Индиаминов** С.И. Танатогенетические аспекты поражения головного мозга человека при геморрагическом шоке //Судебно-медицинская экспертиза. Москва, 2010. -№3. -С.4-6.
- 5. Индиаминов С.И. Морфологические особен-

- ности головного мозга человека при различных вариантах смертельной кровопотери на фоне острой алкогольной интоксикации //Вестник Российского Государственного медицинского университета, Москва. 2011. № 5.- С.63-66.
- 6. **Исхизова** Л.Н., Богомолов Д.В., Богомолова И.Н., Должанский О.В. Установление причины и темпа смерти в судебно-медицинской практике // Суд.- мед. эксперт. 2005. №2. С. 8-22.
- 7. **Пиголкин** Ю.И., Богомолов Д.В., Богомолова И.Н. и др. Дифференциальная диагностика острых отравлений наркотиками и этанолом // Суд.- мед.эксперт. 2003. №6. С. 37-43.
- Пиголкин Ю.И., Должанский О.В., Борлакова Б.У., Пильх М.Д. Судебно-медицинская оценка острой кровопотери в сочетании с черепномозговой травмой и алкогольной интоксикацией //Суд.- мед.эксперт. 2007.- №3. С. 3-5.
- Шорманов С.В. Структурные изменения головного мозга человека в условиях острой алкогольной интоксикации //Арх. патол.- 2004.-Т.66, №4. - С. 9-13.
- 10. **Шорманов** С.В., Шорманова Н.С. Гистоморфометрическая характеристика головного мозга человека при острой алкогольной интоксикации // Суд.- мед.эксперт. 2005. №2. С. 13-16.

ТАНАТОГЕНЕТИЧЕСКИЕ ПРИЗНАКИ СОСУДИСТО-ТКАНЕВЫХ РЕАКЦИЙ ГОЛОВНОГО МОЗГА ПРИ ГЕМОРРАГИЧЕСКОМ ШОКЕ НА ФОНЕ ОСТРОЙ АЛКОГОЛЬНОЙ ИНТОКСИКАЦИИ

Индиаминов С.И.

Резюме. Проведенное исследование позволило установить изменение роли сосудисто-тканевых структур головного мозга в танатогенезе при ге-

моррагическом шоке на фоне предшествующей кровопотере острой алкогольной интоксикации.

Ключевые слова: головной мозг, геморрагический шок, острая алкогольная интоксикация.

TANATOGENETIC SIGNS OF VASCULAR TISSUE REACTIONS OF THE BRAIN DURING HEMORRHAGIC SHOCK IN THE BACKGROUND OF ACUTE ALCOHOL INTOXICATION

Indiaminov S.I.

Summary. The research allowed to determine the changing role of the vascular-tissue structures of the brain in thanatogenesis in hemorrhagic shock in the

background of previous hemorrhage acute alcohol intoxication.

Keywords: brain, hemorrhagic shock, acute alcohol intoxication.