УДК 681.3.07

АВТОМАТИЗАЦИЯ ПРОЦЕССА МОДЕЛИРОВАНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПЛАНИРОВАНИЯ И КОНТРОЛЯ РАБОТ ПО РЕАЛИЗАЦИИ ПРОЕКТОВ

д. т. н., проф. Попов С. О., д. т. н., проф. Тимченко Р. А., асп. Петкун С. М., асп. Рошкова К. А. ГВУЗ «Криворожский национальный университет», г. Кривой Рог

Постановка научной проблемы. Одним из важных направлений в проектно-ориентированной деятельности, является создание информационных систем, для решения задач планирования проектов и контроля их реализации. К таким уже разработанным системами относятся системы организационного моделирования: Microsoft Project, Project Expert, Prima Ware, BPWin и др.

Несмотря на широкий круг фирм, работающих в области разработки этих систем, пока еще не решены многие вопросы в области автоматизации проектно-ориентированной деятельности в них. В частности одним из таких вопросов является отсутствие единого методического подхода к разработке таких систем, который учитывает полный комплекс задач проектов в конкретных областях и обеспечивают рациональное использование вычислительных ресурсов компьютеров. Следует отметить, что фирмы разработчики таких систем часто даже не берутся решать такие задачи. Наряду с этим они предоставляют возможность самим разработчикам проектов создавать системы, способные их решать.

Для этого в такие компьютерные системы встроены специальные языки программирования. Синтаксис и управляющие структуры этих языков разработаны так, чтобы их мог освоить специалист, не являющийся профессиональным программистом. Знания этих языков даже на элементарном уровне позволяет создавать достаточно мощные информационные комплексы предметно-ориентированного характера без привлечения таких программистов.

Однако, разработка таких программ требует и определенной методологии, особенно для задач планирования проектов со сложной организационной структурой.

Анализ исследований проблемы. Анализ литературных источников по методическим основам разработки автоматизированных систем управления проектами, весьма мало. Кроме того, все они в

основном описывают только порядок использования таких систем [1, 2, 3] без описания методологии их разработки. Таким образом, принципиальная и методическая основа их построения скрыта от пользователя. Однако, для специалистов, занимающихся разработкой таких систем для решения задач конкретных профессиональных областей, эти основы представляют первостепенный интерес.

Цель и задачи исследований. В связи с изложенным выше, авторами были проведены специальные исследования. Целью этих исследований являлась разработка методических основ создания автоматизированных систем планирования проектов, и контроля их выполнения предметно-ориентированного характера. Основные результаты этих исследований изложены ниже.

Создание автоматизированных систем планирования и контроля следует начинать с выявления задач и определения набора функций, которые должны быть в них реализованы. Содержание этого набора функций определяется путем декомпозиции имитационной модели проекта. Число уровней декомпозиции зависит от конкретного вида проекта и условий, в которых он реализуется.

Увеличение числа уровней позволяет более наглядно выявить законченные структурные компоненты таких систем их взаимосвязи. Однако, излишняя детализация и дробление функций могут привести к тому, что уровни декомпозиции фактически станут отдельными операторами языка программирования, командами компьютеров. Такая детализация является нецелесообразной.

Рассмотрим пример декомпозиции функций имитационной модели проекта. Самым верхним является уровень 0, реализующий оперативно-организационного управления Декомпозицией F0 является: уровень 1, который включает: F1 – функции оперативного планирования; F2- оперативного контроля; F3общесистемные и вспомогательные операции. Декомпозиция F1 на первом уровне включает: F11 - подготовка данных для построения сетевой модели проекта; F21 - расчет временных характеристик сетевой модели; F31 – расчет контрольных календарных дат; F41 – формирование плановых документов. Декомпозиция F2 на втором уровне включает: F12 – оценка объема и качества выполнения работ на заданную дату; F22-корректировка сетевой модели относительно конкретных дат начала работ; F32 - перерасчет сетевой модели с учетом реальных сроков начала и состояния выполнения работ; F42 формирование оперативных документов. Декомпозицию F3 можно представить в виде: F13 – ведение предметной области; F23 – защита программных и информационных средств от несанкционированного доступа; F33 – формирование диалога с системой; F43 – формирование справок и инструкций по работе с системой моделирования.

Дальнейшая декомпозиция функций имеет следующий вид:

F1n1: F111-формирование файла основных характеристик сетевой модели; F121 – формирование файлов дополнительных характеристик сетевой модели. F2n1: F211 – тестирование сетевой модели на наличие контуров и тупиковых вершин; F221 – тестирование сетевой модели на наличие повторяющихся работ; F231 – перенумерация узлов сети; F241 – расчет потенциалов узлов и формирование расчетных характеристик в файле основных характеристик. F3n1: F311 установка параметров календаря; F321 – перерасчет относительных временных сдвигов в календарные события. F4n1: F411 - запрос в диалоге параметров типа документа; F421-выборка необходимых полей из предметной области планирования. F1n2: F112 – определение даты оценки состояния сетевой модели; F122 – определение фронта выполняемых работ. F2n2: F212 – формирование даты начала выполнения проекта; F222 – формирование расчетных характеристик модели; F232 – корректировка предметной области сетевой оперативного контроля проекта. F3n2: F312 - ввод сводок о выполнении работ; F322 – коррекция предметной области контроля в соответствии с реальным состоянием сетевой модели; F332 – расчет временных параметров модели. F4n2: F412 – запрос типа документа; F412 – выборка необходимых полей из предметной области контроля. Декомпозицию функций F1n3 – F4n3 можно осуществить аналогично.

Предположим, что определено все множество функций системы моделирования. Каждому режиму поставлены в соответствие задачи и реализуемые ими функции, причем определена последовательность инициации задач в режиме функций в каждой задаче. Любая функция системы, может быть реализована программным путем с помощью универсальных вычислительных средств, а отдельные функции что сокращает время вычислений. Определение оптимальной структуры функций системы моделирования требует распределения вычислительной нагрузки между универсальными и специализированными вычислительными средствами. При этом с одной стороны, необходимо учитывать требования быстродействия и производительности системы, а с другой – ограничения на аппаратные затраты.

Выигрыш во времени вычислений при аппаратной реализации не всегда означает безусловный выигрыш в информационной производительности, поскольку потери времени на обмен исходными данными и результатами вычислений могут быть соизмеримыми со

временем программной реализации алгоритма. Оптимизация структуры системы моделирования предполагает решение вопроса о том, какие функции из заданного набора будут реализованы аппаратно, а какие программно и как будет организован интерфейс между компонентами системы моделирования.

Все это приводит к необходимости формализовать подход к выбору оптимального варианта структуры функций.

Пусть общее число функций такой системы определено в виде конечного множества $G=\{gi\}$, где gi- отдельная функция, i=1+m. Каждая отдельная функция gi может быть реализована программно либо аппаратно.

Зададим на множестве функций G множество векторов структурной реализации системы моделирования: $A=\{ai\}$, где ai- вектор-строка структурной реализации системы, $i=1\div K$.

Значение координаты ј вектора аі выбирается из условия: аіј=1—если функция gi в структурной реализации аі выполняется программно; аіј=0—если функция gi в структурной реализации аі реализована аппаратно. Число координат вектора аі соответствует числу функций моделирования, то есть $i=1\div m$. Множество функций G является основой построения задач системы. Каждая задача может включать определенное подмножество множества G.

Предположим, что задачи системы определены множеством $Z=\{zi\}$, где zi-отдельная задача. В зависимости от конкретной структурной реализации каждая задача zi может включать отдельные функции реализованные аппаратно либо программно. Необходимо отметить, что в результате значительного количества таких функций и наличия функций, требующих итерационных вычислений (например, при оптимизации), а их выполнение требует весьма значительного времени, возникает проблема, сокращения этого времени.

Потери времени на выполнение программно реализованных функций в отдельных задачах определим с помощью матрицы программных временных затрат Lnm={lij}, где lij-время программной реализации функции gi в задаче zi.

Для конкретной структурной реализации аі время выполнения программной части задач представляет вектор-столбец, определяемый из выражения $L\bar{a}i=\{t1...tn\}$, где t1...tn—затраты времени на программную реализацию функций в задачах z1—zn; $\bar{a}i$ —транспонированный вектор ai.

Для оценки времени выполнения функций, реализованных аппаратно, введем матрицу временных затрат на аппаратную реализацию функций: Mnm={mij}, где mij-время аппаратной

реализации функции gi в задаче zi. Если ввести вектор-строку a'i= $\{(1-ai1), (1-ai2), ..., (1-aim)\}$, то время аппаратной реализации задач определится из выражения Mā'i= $\{t'1...t'n\}$, где t'-затраты времени на аппаратную реализацию функций в задачах z1÷zn; ā'i-транспонированный вектор от a'i.

Аппаратная реализация вызывает неизбежные затраты времени на выполнение интерфейсных операций, поэтому введем матрицу интерфейсных временных потерь $Dnm=\{dij\},\$ гле dii-время интерфейсных операций для функции діј реализованной аппаратно в задаче zi. Для конкретной структурной реализации аi временные потери на интерфейс в различных задачах определяются следующим вектором-столбцом $D\bar{a}'i=\{t''1...t''n\}$, где t''1...t''n—суммарные затраты времени на интерфейсные операции при аппаратной реализации функций в задачах z1÷zn.

Суммарный вектор временных затрат в отдельных задачах определится из выражения

$$\operatorname{La}_{\mathrm{i}} + (M + D)\overline{\mathbf{a}}_{\mathrm{i}} = \left\{t_{1}^{\Sigma} ... t_{n}^{\Sigma}\right\},\tag{1}$$

где $t^{\Sigma}_{1}...t^{\Sigma}_{n}$ — суммарные затраты времени на выполнение функций в задачах $z_{1}\dot{z}_{n}$.

Предположим, что на определенном отрезке времени работы системы задана вероятность либо часть работы каждой задачи в виде вектора-строки $P=\{pi\}$, i=1+n, где $\Sigma pi=1$.

Среднее время работы задачи в этом случае в соответствии с выражением (1) может быть найдено следующим образом

$$\mathbf{t}_{\tilde{\mathbf{n}}\tilde{\mathbf{d}}} = \mathbf{P} \left[\mathbf{L} \mathbf{a}_{i} + (M + D) \mathbf{\tilde{a}'}_{i} \right]. \tag{2}$$

Аппаратная реализация сопряжена с затратами на оборудование, которые могут быть учтены, например, числом микросхем, типовых плат и др. Поскольку затраты на универсальные вычислительные средства неизбежны при любой структуре системы моделирования, будем, учитывать только затраты на специализированные средства реализации отдельных функций, а также затраты на разработку интерфейсов с ними.

Определим вектор-строку затрат на реализацию отдельных функций в виде $C=\{ci\}$, где ci-затраты на аппаратную реализацию функции gi, i=1÷m. Затраты на реализацию интерфейса могут быть учтены в соответствующих ci. Суммарные затраты на аппаратную реализацию для соответствующей структуры системы моделирования определяются из выражения S=Cai.

Критерием выбора оптимальной структуры функций системы может быть среднее время реализации задачи при ограничениях на аппаратурные затраты либо затраты на оборудование при ограничениях на среднее время решения задачи. В первом случае задача оптимизации формулируется следующим образом:

найти
$$\min_{\mathbf{a}\mathbf{i}} P \left[\overline{\mathbf{La}}_{\mathbf{i}} + \left(M + D \right) \overline{\mathbf{a'}}_{\mathbf{i}} \right]$$
 при $C \overline{\mathbf{a'}}_{\mathbf{i}} \leq S_{\ddot{a}\ddot{n}}$, (3)

где $i=1\div K_n$, $S_{\partial on}$ —допустимые затраты на аппаратную реализацию системы.

Во втором случае поиск оптимальной структуры функций системы формулируется в виде:

найти
$$\min_{ai} C\overline{a'}_i$$
 при $P\left[\overline{La_i} + (M+D)\overline{a'}_i\right] \leq \grave{O}_{aii}$, (4)

где $T_{\partial on}$ -максимально допустимое время решения задачи.

Решение в обоих случаях позволяет определить оптимальное значение вектора структурной реализации a_i . Значения координат позволяют судить о том, какие функции следует выполнять программно, а какие аппаратно.

Определенную трудность вызывает нахождение значений элементов матрицы программных временных затрат L и аппаратных временных затрат М. На этапе выбора вектора структурной реализации обычно отсутствуют значения элементов этих матриц, поскольку ни одна из функций имитационной модели не реализована ни аппаратно, ни программно. В этом случае целесообразно воспользоваться данными аналитического моделирования основных функций.

Общий подход к определению вектора ее структуры системы может быть сформулирован в виде такого алгоритма.

1. Определить структуру, набор функций и множество задач имитационной модели. 2. Задать матрицу аппаратных временных потерь: Mnm={mij}. 3. Задать матрицу программных временных потерь: Lnm={lij}. 4. Определить множество векторов структурной реализации системи: A={ai}. 5. Определить вектор затрат C={ci} на аппаратурную реализацию отдельных функций. 6. Выбрать тип оптимизационной задачи (3) либо (4). 7. Задать ограничения. 8. Решить оптимизационную задачу на множестве векторов структурной реализации и найти необходимый вектор ai.

Выводы и перспективы дальнейших исследований. На основании выполненных исследований авторами был разработан методический подход к созданию автоматизированных систем поддержки проектно-ориентированной деятельности, позволяющий

формировать информационные системы планирования работ проекта и контроля их реализации с оптимальной структурой функций, отвечающих конкретной области проектной деятельности.

Направление дальнейших работ в этой области состоит в создании функциональной модели системы управления проектами, которая позволяла бы на основании объектно-ориентированного подхода формировать систему моделирования проектов из заранее подготовленных модулей решения проектных задач, выбирая их из библиотеки с компоновкой в систему моделирования соответственно организационной структуре управления проектом.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

- 1. Руководство пользователя Project Expert. -М.: Про-Инвест-ИТ, 2002. -175 с.
- 2. Информационные системы и технологии в экономике и управлении / Под. ред. В.В. Трофимова. М.: Высшее образование, 2007. –478 с.
- 3. Сериков А.В. Титов Н.В., Белоцерковский А.В. и др. Компьютерное моделирование бизнес-процессов. Харьков: Бурун Книга, 2007. –304 с.