ТЕПЛОФИЗИЧЕСКИЕ И ЭНЕРГЕТИЧЕСКИЕ АСПЕКТЫ ПРИ РЕКОНСТРУКЦИИ(САНАЦИИ) ОГРАЖДЕНИЙ ЗДАНИЙ

к.т.н.,доцент Ветвицкий И.Л., асс. Каспийцева В.Ю., асс. Колесник И.А., ст.гр.ТГПВ-13-М Шевченко А.А.

ГВУЗ «Приднепровская государственная академия строительства и архитектуры», г.Днепропетровск

Постановка проблемы

Жилой фонд городов в основном представлен типовыми многоэтажными зданиями (зданиями массовой застройки). Для отопления и горячего водоснабжения этих зданий наиболее часто используются центральные системы теплоснабжения с расчетными температурами теплоносителя 150°С-70°С. На практике данный температурный график редко выполняется. Зачастую при низких температурах наружного воздуха потребителю подается теплоноситель с пониженной температурой. В современных системах теплоснабжения вместо расчетной температуры теплоносителя 150°С нагрев сетевой воды производится только до 120°С...130°С, а то и меньше. Данный факт называется «температурным срезом».

При снижении температуры теплоносителя происходит понижении температуры внутреннего воздуха в помещениях. При отсутствии мер по поддержанию комфортных метеорологических параметров в помещении в помещениях температура внутреннего воздуха снижается. Темп снижения будет зависеть только от аккумулирующей способности помещений. При этом надо учитывать, что понижение температуры внутреннего воздуха в жилых помещениях до 10...12°С является показателем критического теплового состояния здания, так как при этом температурные условия помещения становятся крайне неблагоприятными для человека и создают аварийные условия работы инженерного оборудования.

Дальнейшее понижение температуры в жилых помещениях вплоть до нуля градусов характеризуется катастрофическим тепло-

вым состоянием здания, при котором невозможна работа инженерных систем. Аналогичная ситуация также может возникнуть в здании при продолжительном понижении температуры наружного воздуха ниже расчетной.

Из сказанного выше видно, что данная проблема требует глубокого изучения и разрешения. Особую актуальность она приобретает при недостаточно грамотном неквалифицированным обслуживании систем теплообеспечения с учетом реального износа тепловых сетей и источников теплоснабжения.

Цель статьи: Исследование теплофизических параметров ограждающей конструкции до и после их реконструкции (санации)

Изложение основного материала исследований и обсуждение результатов.

Вопросам энергосбережения в городах посвящены исследования, представленные в [2]. В Харьковской национальной академии городского хозяйства разработана методика оценки энергосберегающего потенциала города Харькова[2], где показатель удельных тепловых потери в жилых зданиях в среднем равняется 350 кВт-ч/м²•год, по сравнению с Германией-204 кВт-ч/м²•год и со Швейцарией-70 кВт-ч/м²•год. Составлен энергетический баланс для двух типовых многоэтажных зданий в г.Харькове(см.табл.1,2,3): (кирпичного и панельного). С целью уменьшения энергозатрат были выполнены следующие мероприятия: 1)теплоизоляция фасада с использованием стеклохолста для отделки здания; 2)теплоизоляция кровли или потолка последнего этажа здания;3)замена существующего остекления на стеклопакеты.

В[2] был также выполнен расчет энергетического баланса одного из теплових микрорайонов г.Харькова (см.табл.4) Как следует из таблицы энергопотребления в расаматриваемом микрорайоне может знизиться на 26,27 ГВт•ч/год.

Таблица 1 Основные параметры 2-х типовых многоэтажных зданий

Тип дома	многоквартирный			
Год возведения	1965	1966		
Тип конструкции	кирпичный	панельный		
Количество этажей	9	5		
Количество жилых единиц(ЖЕ)	54	80		
Количество жилых единиц на этаже	6	4		
Общая жилая площадь(площадь получения энергии),м ²	3120,3	4408,5		
Средний размер квартир (то) M^2 , /ЖЕ	57,8	55,1		
Площадь фундамента(кровли), м ²	346,7	881,7		
Общая площадь внешних стен, м ²	2231,3	2565,8		
Общая площадь окон, м ²	416,4	360,4		
Отношение поверхность/объем	0,39	0,4		

Таблица 2 Энергетический баланс 2-х типовых многоэтажных зданий

Тип конструкции	кирпи	чный	панельный		
Трансмиссионые потери теп- ла,МВт-ч/год	411.6	76%	601.4	80%	
Вентиляционные потери тепла, МВт-ч/год	130.2	24%	154.3	20%	
Брутто-потребность тепла для отопления, МВт-ч/год	541.8	100%	755.7	100%	
Притоки тепла, МВт-ч/год	50.8	9.3%	106.3	14.1%	
Абсолютная годовая потребность в тепловой энергии для отопления, МВт-ч/год	491	90.7%	649.4	85.9%	
Абсолютная годовая потребность в тепловой энергии для отопления, КВт-ч/год	157		147.3		

Таблица 3 Потери и притоки тепла 2-х типовых многоэтажных зданий

Потери энергии	МВт-	%	МВт-	%
	ч/год		ч/год	
Тип конструкции	кирпі	ичный	пане	ельный
Потери внешних стен	173	50.8	168.1	28
Потери через кровлю	50.8	11.8	96.3	16
Потери через пол 1-го	37.4	7.5	73.6	12
этажа				
Потери через окна	150.4	29.9	263.4	44
Трансмиссионные поте-	411.6	100	601.4	100
ри тепла				
Вентиляционные потери	130.2		154.3	
тепла				
Потери тепла	МВт-	%	МВт-	%
	ч/год		ч/год	
Тепло электрооборудо-	40.2	79	49.7	46.7
вания				
Тепло людей	22	43	31.1	29.2
Солнечное излучение	8.6	17	53.6	50.4
Водосточные потери	-20.0	39	-28.1	26.3
Притоки тепла	50.8		106.33	

Однако, предложенная методика рассчитана только на анализ штатных режимов работы и не позволяет провести в полном объеме оценку возможных аварийных ситуаций в системах теплогазоснабжения. Одним из основных параметров при этом является коэффициент аккумуляции тепловой энергии. Определим коэффициенты аккумуляции тепловой энергии β,ч для 2-х зданий, значение которого важно знать для расчета динамики температур в аварийных ситуациях. Определим коэффициенты аккумуляции тепловой энергии β,ч для 2-х зданий, значение которого важно знать для расчета динамики температур в аварийных ситуациях, например при отключении системы отопления или резервном теплоснабжении.

В соответствии с[3,4,5]:

$$\beta = \frac{C \cdot M}{\alpha_{H} \cdot F}, \, \Psi(1)$$

С, КДж/кг°С- удельная теплоемкость материала ограждения; М,кг – маса ограждения;

 $\alpha_{\rm H} - \left(\frac{{\rm BT}}{{\rm M}^{20}{\rm C}}\right)$ – коэффициент теплоотдачи на наружной поверхности ограждения для зимних условий;

F,м2-площадь ограждения;

Уточним размерность, учитывая, что 1 Вт=0,86 ккал/час и 1

КДж=0,239 ккал,тогда:

$$\beta = \frac{0.239 \cdot \text{C} \cdot \text{M}}{0.86 \cdot \alpha_{\text{H}} \cdot F} = 0.278 \frac{\text{C} \cdot \text{M}}{\alpha_{\text{H}} \cdot F}, \text{Y}(2)$$

В таблицу 1 приведено отношение наружной поверхности к объему 1-го здания- $\frac{F}{V}$ = 0,39,поэтому,учитывая,что окна составляют 18,7% поверхности, фактическое соотношение: площадь стен/объем будет $\frac{F}{V}$ •0,813=0,39•0,813=0,32

Для 2-го здания $\frac{F}{V} = 0,4$. Учитывая, что окна составляют 14,1 % поверхности, фактическое соотношение: площадь стен/объем будет- $\frac{F}{V}$ •0,859=0,4•0,859=0,34

Получим:

$$\beta = 0,278 \frac{C}{\alpha_{\mathsf{H}} \bullet_{\overline{M}}^{F}} = 0,278 \frac{C}{\alpha_{\mathsf{H}} \bullet_{\overline{V} \bullet \rho}^{F}} = 0,278 \frac{C\rho}{\alpha_{\mathsf{H}} \bullet_{\overline{V}}^{F}} (3)$$

 $M=V \cdot \rho(\rho=\kappa \Gamma/M3-плотность материала)$

Определим коэффициент аккумуляции тепловой энергии β для 1-го здания(материал-силикатный кирпич)при:

$$C=0.88$$
кдж/кг° C ; $\rho=1800$ кг/м³; $\alpha_{\rm H}=23$ Вт/м²° C $\beta=0.278\frac{0.88 \cdot 1800}{23 \cdot 0.33}=60$ ч

Определим коэффициент аккумуляции тепловой энергии β для 2-го здания(материал-керамзитобетон кирпич)при:

C=0,84кдж/кг°С;
$$\rho$$
=1200 кг/м³; $\alpha_{\rm H}=23$ Вт/м²°С β =0,278 $\frac{0,84 \cdot 1200}{23 \cdot 0.34}$ =36ч

В [3] приводятся следующие значения коэффициента аккумуляции тепловой энергии β :

β=50 ч-3-х слойная панель с эффективным утеплителем;

β=70 ч- панель из керамзитобетона;

β=85 ч- кирпичная кладка;

Более высокие значения β на 30-50% связаны с дополнительной аккумуляцией тепловой энергии внутренними стенами, чердачным и подвальным перекрытиями, в то время как наш расчет по формуле(3) осуществляется только для наружных ограждений.

Таблица 4 Энергопотребление и потенциал экономии кирпичных и панельных зданий

Тип зда- ний	Количе- ство зда- ний,шт.	Энергетический показатель теп- ла,кВт-ч/м•год		Потребелние полезной энергии,ГВт-ч/год		Потенциал экономии энергии		
		фактичес-	цель	факти-	цель	ГВт-	Тыс. м ³ .	
		кое		ческое		ч/год	природ-	
							НОГО	
							газа	
5-ти этаж-	25	130,5	50,4	20,69	8,0	12,6	1250	
ные пане-						9		
льные								
5-ти этаж-	7	155,4	42,3	4,66	1,3	3,36	344,6	
ные кир-								
пичные								
9-ти этаж-	1	113,3	26,1	0,83	0,19	0,64	65,6	
ные пане-			6					
льные								
9-ти этаж-	16	143,9	29,9	12,1	2,52	9,58	1148	
ные кир-								
пичные								
Cyngrapyyya ayyayayyg			38,28	12,0	26,2	2802,2		
Суммарные значения					1	7		

Полученные показатели удельного теплового потока (удельного теплопотребления) целесообразно сопоставить с контрольными показателями, рекомендуемыми для подобных зданий Гос.ком. Украины по строительству и архитектуру в 1996 г.:

- -[2]г.Харьков(до санации)-0,56 ГДж/м²•год=156 кВт•ч/м² •год
- [2]г.Харьков(после санации)-0,14 ГДж/м2•год=39 кВт•ч/ м²•год

-1-я климатическая зона Украины(>3500 гр-сут.)=0,43 ГДж/м 2 • год=120 КВт•ч/м 2 •год

Сравнения этих показателей, безусловно, свидетельствует о целесообразности реконструкции наружных ограждений зданий с целью энергосбережения, что также весьма важно в условиях резервного(дефицитного) теплоснабжения, а также при аварийном отключении системы отопления.

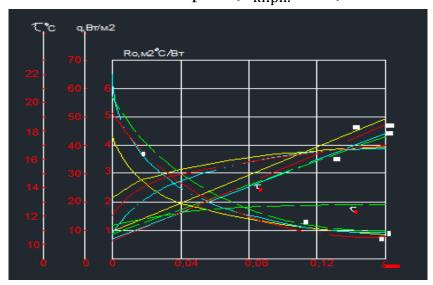
Что касается реального снижения теплопотребления, рекомендуемого Государственным комитетом Украины по строительству и архитектуре, то оно будет равно:

$$\Delta q = \frac{156 - 120}{156} \bullet 100\% = 23\%$$

Вывод

Были исследованы 4 варианта реконструкции ограждений зданий с использованием пенополистирола (таблица5). Рассматривались следующие расчетные варианты стен: 1)керамзитобетон(δ =0,35 м; λ =0,4 Вт/(м°C); ρ =1100 кг/м³);

- 2) керамзитобетон (δ =0,4 м; λ =0,67 Bт/(м°C); ρ =1600 кг/м³););
- 3)силикатный кирпич(δ =1,5x0,35 м; λ =0,76 Bт/(м°C); ρ =1100 кг/м³);
- 4) силикатный кирпич (δ =2x0,25 м; λ =0,76 Bт/(м°C); ρ =1100 кг/м³););


Таблица 5 Значение термического сопротивления, удельных теплопотерь, коэффициента снижения теплопотерь и температуры на внутренней поверхности реконструируемого ограждения.

Вари	анты стен	Тепл.пар.	0	0,04	0,06	0,08	0,1	0,15
1 ва-	Керамзито-	$R_0, M^2); {}^0C$	0,96	1,93	2,42	2,91	3,4	4.6
риант	бетон							
	δ=0,35 м	$q,BT/M^2$	43	21,3	16,8	14,0	12,6	9,35
	λ=0,4	3	1	2,0	2,5	3,1	3,4	4,6
	$BT/(M^0C);$							
	ρ=1100	Тв, ⁰ С	13,1	15,5	16,0	16,4	16,6	17,0
	кг/ м ³);							
2 ва-	Керамзито-	R_0 , $M^{20}C$	0,76	1,73	2,22	2,7	3,2	4,4
риант	бетон							

	δ=0,4 м	q , B T/ M^2	56,8	24,8	18,6	15,9	12,85	9,5
	λ =0,67 BT/(M 0 C);	3	1	2,3	3,0	3,51	4,4	6,0
	ρ=160кг/м ³	Тв, ⁰ С	11,8	15,3	15,9	16,2	16,5	16,9
3 ва- риант	Силикат- ный кирпич	R_0 , $M^{20}C$	0,66	1,63	212	2,6	3,09	4,32
	δ=1,5x0,25	$q,BT/M^2$	64,9	26,4	20,5	16,5	13,9	10
	λ =0,76 BT/(M^{0} C);	3	1	2,46	3,2	3,9	4,7	6,5
	ρ=1800 кг/м ³	$T_{B,0}C$	10,9	15,1	15,7	16,2	16,5	16,9
4 ва- риант	Силикат- ный кирпич	R_0 , $M^{20}C$	0,83	1,8	2,29	2,8	3,27	4,48
	δ=2х0,25 м	q , B T/ M^2	52,0	23,9	18,9	15,4	13,2	9,6
	λ =0,76BT/ (M ⁰ C);	3	1	2,2	2,7	3,4	3,94	5,4
	ρ=1800 кг/м ³	Тв, ⁰ С	12,3	15,4	15,9	16,3	16,6	16,9

Анализ полученных результатов показал, что устройство дополнительного внешнего слоя утеплителя из пенополистирола толщиной δ =0.04-0.06 м дает возможность: а)получить нормативные значения сопротивления теплопередаче для наружных ограждений в 1-й и 2-й климатических зонах Украины; б)снизить теплопотери в 2,5-3 раза; в)обеспечить достаточно высокую (комфортную) температуру на внутренней поверхности Тв=16°С(при tн=-23°С). Дальнейшее увеличение толщины утеплителя до 0,15 м приводит к повышению температуры на внутренней поверхности ограждения всего на 1°С,но теплопотери при этом снижаются в 4,5-6,5 раз.

Приводим графики зависимости термического сопротивления, удельных теплопотерь и температуры на внутренней поверхности реконструируемого ограждения от толщины утеплителя.

Используемая литература

- 1. Данилов М.П. Строительная теплофизика в задачах, примерах и рекоменлациях. Днепропетровск: РИО ПГАСА, 2002. 214с.
- 2.МаляренкоВ.А.,Орлова Н.А.Энергосберигающий потенциал в жилом фонде города Харьова//Интегрированные технологии и энергосбережение.-2003.-№4.с36-40.
- 3. Кононович Ю.В. Тепловой режим зданий массовой настройки.-М.:Стройиздат, 1986.-158.c
 - 4. Данилов М.П., Григорьев Л.Н., Мерещук А.В. Теплоустой чивость и тепловой режим зданий, инженерных коммуникаций
- 5.Дроздов В.Ф.Отопление.-М.: «Высшая школа»,1976.-280с.
- 6. ДБН В.2.6-31:2006 Теплова ізоляція будівель, К.: Мінбуд Украіни, 2006.-71 с.
- 7.СНиП2.04.05-91У.Отопление, вентиляция и кондиционирование.- К:Гос.ком. Украины по градостроительству и архитектуре.