УДК 620.197.3

ИНГИБИТОРЫ КОРРОЗИИ ДЛЯ ЗАЩИТЫ МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ В СЕРОВОДОРОДСОДЕРЖАЩИХ ЭЛЕКТРОЛИТАХ

д. т. н., проф. Волошин В. Ф., к. х. н., доц. Скопенко В. С., В. В. Волошина

Ключевые слова: ингибитор, пиридин, β - пиколин, сероводород

Проблема. Коррозионное разрушение магистральных нефтепроводов, транспортирующих товарную нефть или газ, обусловлено агрессивностью среды (присутствие минерализованной воды, содержащей H_2S , CO_2 , O_2), гидродинамическим режимом, приводящим к выделению и скоплению водной фазы, а также наличием в транспортируемой среде остаточного количества деэмульгаора.

Анализ публикаций. Коррозионная агрессивность среды определяется главным образом содержанием эксплуатационных скважин сероводорода. Значительное повышение агрессивности среды происходит при попадании в систему эффективного деполяризатора коррозии — кислорода. Совместное присутствие сероводорода и кислорода в минерализованных средах существенно ускоряет скорость коррозионного процесса. Продуктами взаимодействия кислорода и сероводорода является элементарная среда которая, обладая деполяризующими свойствами, стимулирует развитие язвенной коррозии нефтегазопромышленного оборудования. Кинетика взаимодействия O₂ и H₂S в первую очередь определяется рН и температурой среды, причем с наибольшей скоростью кислород реагирует с ионами сульфида и гидросульфида. При совместном присутствии в коррозионной среда O₂ и H₂S наблюдается резкое возрастание скорости коррозии черных металлов [1 – 3].

Анализ аварийности нефте- и газопроводов показал, что основной причиной аварий является внутренняя коррозии труб. Установлено, что наибольший защитный эффект обеспечивает применение ингибиторов, однако, потребности в них удовлетворены лишь на $10-12\,\%$.

Цель работы. С целью расширения ассортимента их созданы новые эффективные ингибиторы на основе побочных фракций химпроизводства.

Исследовано влияние концентрации этилендиамина («ЭТДА»), триэтилентетраамина («ТЭТА») и гексаметилендиамина («ГМДА»), кубового остатка этилендиамина (КОЭД) и кубового остатка тетроэтилендиамина (КОТЭДА), рН, концентрации сероводорода на скорость коррозии стали (Ст. 3). Испытания проводились гравиметрическим методом по ГОСТ 9.402-80. По потере массы образцов определяли скорость и защитный эффект; рН среды устанавливали путем добавления щелочи (NaOH) или уксусной кислоты (СН₃

О В Результаты экспериментов приведены в таблице 1.

Таблица 1 Результаты экспериментов

Ингиби- тор	Конц.	Скорость коррозии г/м ² ·сут											
	ин-	Конц. H ₂ S г/л, при				рН при конц. $H_2S=2$ г/л							
	гиб.	pH=6											
	масс	0,2	0,5	1,0	1,5	2,0	3	5	6	7	8	10	11
	%	5	0,5	1,0	1,5	2,0	3	5	U	,	8	10	11
Без ин-	-	1,3	1,5	1,5	2,7	3,2	4,3	3,9	3,2	2,9	2,5	2,1	1,8
гибитора												6	
«ЭТДА»	0,5	0,2	0,39	0,3	0,4	0,6	0,8	0,7	0,6	0,5	0,3	0,2	0,2
		8		0	2	3	1	2	3	4	8	2	0
«ТЭТА»	0,5	0,2	0,26	0,2	0,3	0,5	1,2	1,0	0,5	0,4	0,2	0,1	0,1
		2		8	7	5			6	7		6	5
«ГМДА»	0,5	0,2	0,31	0,3	0,4	0,5	1,4	1,2	0,5	0,5	0,4	0,1	0,1
		6		2	1	9			9	4	7	9	7
«КОЭД»	0,5	0,1	0,14	0,2	0,3	0,4	0,6	0,6	0,5	0,4	0,2	0,1	0,1
		2		4	2	7	2	0	6	7	0	4	2
«КОТЭ-	0,5	0,1	0,13	0,2	0,3	0,3	0,6	0,5	0,5	0,4	0,1	0,1	0,1
ДА»		1		1	0	8	0	8	4	4	7	2	0

Как следует из таблицы 1, с ростом концентрации сероводорода наблюдается рост скорости коррозии, так как повышается кислотность среды, а с повышением рН уменьшается скорость коррозии, потому что в ингибиторный эффект вносят определенную долю ионы гидроксила. Максимальная степень защиты полиаминов в водных сероводородсодержащих средах достигает 70 – 90 % при рН=11, а от наводороживания32 – 42 %.

Защитны 1 эффект метилпроизводных пиридинов (лутидинов, пиколинов, коллидинов) в парогазовой фазе при 30° C от общей коррозии составляет 42,0 – 65,8 % и от наводороживания 47,7 – 60,8 %.

Нами экспериментально установлен новый эффект совместного действия 2,6-диметилперидина, 2-метилперидина, 3-метилпиридина, 4-метилпиридина и диэтилентриамина, которое выражается в сверхсуммарном защитном эффекте новой совокупности известных компонентов в паровой фазе в интервале температур 0 - 60°C при оптимальном соотношении компонентов, масс % [1]: 2,6-диметилперидин 5-8; 2-метилпиридин 16,0-23,0; 3-метилпиридин 8-13; 4-метилпиридин 12-14; диэтилентриамин 43-59. Повышение эффективности защиты металлов от коррозии и улучшение технологических свойств достигается з счет дополнительного введения диэтилентриамина. Новый ингибитор «Д-4-1» легкоподвижная жидкость с плотностью и вязкостью при 20°C соответственно 980 – 1100 кг/м³ и $(2,2-2,6)\cdot10$ м²/с, температурой застывания не выше -40°C и температурой вспышки 75°C. Растворим в воде, жидких углеводородах, спиртах. «Д-4-1»получают простым смешением всех компонентов при нормальных условиях.

В качестве показателя защитного действия описываемого ингибитора от наводороживания использовали изменение механических свойств (пластичность ленточных образцов размером $85 \times 10 \times 1$ мм из стали марки У9Д).

Испытания проводили в следующих агрессивных средах: вода минерализованная с содержанием NaCl 150 г/л (1); смесь, состоящая из 1 объемной части бензина A-72 и 1 объемной части водного раствора NaCl 150 г/л (2); парогазовой фазы над водно-углеводородной смесью 2 (3). Насыщение сероводородом сред 1 и 2 производим до концентрации 1,5-2,0 г/л. Концентрация ингибитора 0,1; 0,5 и 1,2 г/л.

Испытания проводим следующим образом. Подготовленные образцы подвешивали в жидкой фазе (среда 1) и в жидкой и паровой фазах (среда 2), заливали в циркуляционную ячейку 500 мл агрессивной среды.

Эксперименты проводили при 0, 10, 30, 60 °C. Результаты испытаний свидетельствует о высоких защитных (z=90-99%) и физикоматематических свойств ингибитора (A=88-90%) в парогазовых средах.

По технологическим свойствам ингибитор оценивали по влиянию на остаточное содержание углеводородов в воде и воды в углеводородах после разделения водно-углеводородной эмульсии. В качестве испытательных сред использовали двухфазную систему, состоящую из бензина A-72 и водного раствора NaCl (100~г/л) в соотношении 1:1. При этом остаточное содержание объемных долей углеводородов в воде 0,13-0,15~% (при концентрации ингибитора 0,1-1,2~г/л) и остаточное содержание объемных долей воды в углеводородах -0,11-0,13 при таком же содержании ингибитора, что свидетельствует о высоких технологических свойствах ингибитора.

Ингибитор «Д-4-1» не является эмульгатором водно-углеводородных смесей при их разделении. Это позволяет повысить надежность эксплуатации указанных систем, контролирующих с сырым сероводородсодержащим сырьем при отсутствии отрицательного влияния на протекание технологического процесса его подготовки на газоконденсатном или нефтяном промыслах.

На основе полиаминов получены новые эффективные ингибиторы коррозии «Д-4», «Д-4-1», «Д-4-2», «Д-4-3», представляющие собой смеси различных фракций выкипания полиаминов с различными фракциями пиридиновых и хинолиновых оснований [1 - 3] (ТУ-14-6-48-87). Они защищают черные металлы в газовых сероводородсодержащих средах: водно-углеводородной жидкой и парогазовой фазах.

Ингибитор «Д-4-1» получают путем смешивания компонентов, масс %метилпроизводных пиридина (МПП) -20 - 30 (фракции выкипания 120 - 145°С) и кубовых остатков производства диэтилентриамина («КОДЭТА») 70 – 80 (полиэтиленполиамины марки В). Он представляет собой темно-коричневую однородную жидкость, не содержащую взвешенных частиц.

Метилпроизводные пиридина («МПП») имели следующий состав, масс %: 2,6-лутидин-21,9; α -пиколин -28-34; β -пиколины-39,4; 2-этилпиридины-2,46; метилпроизводные бензола - остальное.

«КОТЄДА» имели следующий состав, масс %: єтилендиамин-18,7-20,4; диєтилентриамин-30,4-32,0; триєтилентетрамин -17,6-20,4; тетраэтиленпентаамин -15,4-18,3; пиперазин и его производные -5,9-8,9; вода — остальное.

Коррозионные испытания проводились на образцах стали 20 при 25°C и 60°C в течении 6 ч. В качестве агрессивных сред были использованы две жидкие среды: среда 1 — раствор NaCl; среда 2 — пентан и одна парогазовая фаза — над двухфазной системой, соятоящей из водной и 3 % раствора NaCl и пентана в соотношении 1:1, насыщенные сероводородом до концентрации 1,8 /л.

Эффективность защиты от коррозии в разных фазах расслаивающейся водно-углеводородной смеси при 25° С и концентрации ингибитора 0,1-0,5 г/л составляет: от общей коррозии 98-99,9 % и от наводороживания -96,7-100,0 % [1].

Создан ингибитор сероводородной коррозии «Д-4» состоящий из фракции «пиридин-растворитель» состав масс %: пирилин-15,0; α -пиколин 80; β -пиколин 0,81; γ -пиколин 0,14; м, n-ксилол-0,13; бензол 0,23; стирол-0,34; толезол 0,65 в количестве 25 % и кубовые остатки производства этилендиамина («КОЭД») в количестве 75 %.

Ингибитор «Д-4-1» предназначен для защиты от сероводородной коррозии нефте- и газопромышленного оборудования, в частности промысловых систем трубопроводного транспорта жидкой продукции сероводородсодержащих газовых и нефтяных месторождений. Комплексный состав ингибитора «Д-4-1» позволяет эффективно защищать оборудование в каждой из фаз водно-углеводород-парогазовой смеси после их разделения и обладая деэмульгирующими свойствами, благотворно влияет на качество разделения водно-углеводородных эмульсий. Это свойство достигается тем, что ингибитор содержит метилпроизводные технической фракции с температурой выкипания 120 - 145°С и этилендиамин. Температура застывания ингибитора «Д-4-1» не выше минус 40°С.

Определение влияния ингибитора «Д-4-1» не вспенивание проводилось в водных растворах диэтеноламина. Увеличение высоты слоя пены ингибиторного амина для ингибитора «Д-4-1» составила не более 25 мм, а для импортного ингибитора Nalco 4569, ранее освоенного на Оренбургском ГКМ, составляет 67 мм. При этом увеличение стабильности пены ингибированного амина для «Д-4-1» не более 7 сек, а для «Nalco 4569» составляет 30 сек.

В нефтегазовой промышленности наблюдается интенсивная коррозия маталлического оборудования в парогазовых средах при понижении температур (0 - 30°С). Создан новый ингибитор сероводородной коррозии стали «Д-4-2» с целью повышения эффективности защиты металлов в парогазовых средах при пониженных температурах и для улучшения технологических свойств ингибитора. Он содержит, масс %: 2,6-диметил-пиридин-6-9; 2-метилпиридин-16-23 %; 3-метилпиридин-8-12; 4-метилпиридин 12-14; диэтилентриамин-43-59 (пилиэтиленполиамин марки Б) [2]. Ингибитор «Д-4-2» - темно-коричневая жидкость, не содержащая взвешенных частиц, предназна-

ченных для защиты от сероводородной коррозии нефте- газопромышленного оборудования и трубопроводов, контактирующих с ненасыщенными природными и попутными нефтяными газами, для защиты от коррозии нефтяных резервуаров. Он эффективен в жидких и парогазовых средах в диапазоне температур 0 - 60°С,практически не оказывает влияние на эмульгирующие свойства водноуглеводородных эмульсий. Это свойство достигается тем, что он содержится в качестве метипроизводных пиридина 2,6-диметилпиридин (фракции выкипания метипроизводных пиридина 120 - 160°С) и диэтилентриамина (плиэтилен-полиамина марки «Б»).

На основании системного подхода к ингибиторной защите трубопроводов, транспортирующих коррозионно-агрессивные газожидкостные смеси, авторами работы [2] разработана программа выбора дозировок ингибитора коррозии для обработки трубопроводов влажного кислого газа.

Температура застывания ингибитора «Д-4-2» не выше минус 40° С. Защитное действие ингибитора «Д-4-2» в паровой фазе достигает 90-99 %:(для импортного, ранее освоенного «Nalco 4569» составляет 60 %).

Новый ингибитор «Д-4-3» создан на основе различных фракций выкипания пиридиновых и хинолиновых оснований и побочных продуктов производства диэтиламина (ТУ-14-6-48-87). Предназначены для защиты от коррозии газопроводов, газоконденсатопроводов, нефтяных резервуаров. Этот продукт представляет собой темно-коричневую прозрачную жидкость, не содержащую взвешенных частиц. Температура застывания не менее минус 40°С.

Промышленное использование парожидкофазных ингибиторов «Д-4», «Д-4-1», «Д-4-2», «Д-4-3» проводили на магистрально газопроводе кислотного газа НГДУ «Бугурусланнефть». Газопроводы сооружены из прямошовных стальных (Ст. 3) труб диаметром 219 мм, пропускной способностью 50 тыс. м³ газа в сутки. В состав продукции входят: кислый нефтяной газ, вода, газовый бензин, нефть, H₂S, CO₂. Присутствие H₂S и CO₂, и воды обусловливало интенсивную местную (в виде отдельных язв) и общую коррозию. За полгода, предшествовавшему началу ингибиторной обработки, на газопроводе было зарегистрировано 57 разрушений. Для осуществления коррозионного контроля в начале и в конце газопровода были врезаны 2 лубрикатора. Для закачки ингибитора подготовлен блок реагентов БР-2,5 с дозировочным насосом НД 2,5/16. В качестве средств коррозионного контроля использовали образцы для определения гравиметрических потерь из Ст. 3 (50×25×2 мм) и образцы для оценки степени охрупчивания металла из стали У8A (100×10×1 мм), установленные в держателях на штоках лубрикаторов. Вводим ингибиторы в трубопровод через стальную трубку с внутренним диаметром 3 мм, не прибегая к распылению. Суточных расход ингибитора 1,8 л. Его вводим непрерывно при объемном расходе 0,35 г/час. Результаты приведены в таблице 2.

Таблица 2 Эффективность новых ингибиторов в агрессивной среде (t=25°C)

Ингибитор	Время экспо- зиции в кор- розионной среде, час.	Скорость корро- зии, г/м ² час	Защитное действие от общей корро-зии, z %	Число перегибов образцов до разрушения, п	Защитное действие от охрупчивания, р %
«Д-4»	1032	0,050	94,5	29,0	97,7
«Д-4-1»	1032	0,041	94,5	29,9	99,6
«Д-4-2»	1032	0,028	97,0	30,0	100,0
«Д-4-3»	1032	0,020	98,0	30,0	100,0
«Nalco 4569»	1032	0,22	79,9	23,4	72,6
Без инги- битора	1032	0,92	-	2,6	-

Данные представленные в таблице свидетельствуют, что после ввода ингибитора резко снизилась интенсивность общей коррозии и практически исключено снижение пластических свойств контрольных образцов. Наблюдалось реальное улучшение условий эксплуатации трубопровода. За год повреждений было зарегистрировано только 5, связанные с эксплуатацией трубопровода без ингибитора и потому толщина стенки трубы в отдельных местах достигла критического значения [1].

Вывод. Таким образом, опыт эксплуатации сборного газопровода попутного кислотного нефтяного газа на объектах по «Оренбургнефть» с применением парожидкостных ингибиторов сероводородной коррозии «Д-4», «Д-4-1», «Д-4-2», «Д-4-3» подтвердил перспективность защиты подобных трубопроводов ингибиторами данного типа, а также целесообразность производства и применения таких ингибиторов в больших масштабах.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

- 1. А. с. 1536861 C23F 11/04. Ингибитор сероводородной коррозии черных металлов «Д-4-1» / В. Ф. Волошин, В. С. Скопенко, В. С. Бакуменко. № 4424435. Заявл. 12.05.88. Зарег. 15.09.89. 8 с.
- 2. А. с. 1403668 C23F 11/00. Ингибитор сероводородной коррозии стали «Д-4-2» / В. Ф. Волошин, В. Ф. Кривоеев, В. И. Киченко. № 4131798. Заявл. 08.10.86. Зарег. 15.02.88. 10 с.
- 3. А. с. 1235774 C23F 11/04, 11/04. Ингибитор сероводородной коррозии стали «Д-4-3» / В. Ф. Волошин, В. С. Бакуменко, В. С. Скопенко. № 3806829. Заявл. 17.07.84. Зарег. 08.02.86 6 с.