УДК 628.517.2

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ЭУ-2010 ДЛЯ ПРЯМОГО ФИЗИЧЕСКОГО МОДЕЛИРОВАНИЯ ШУМА ВИБРОАГРЕГАТОВ

соискатель Паращиенко И.Н.

Полтавский национальный технический университет им. Ю. Кондратюка г.Полтава

Постановка проблемы. На заводах строительной индустрии, в частности на заводах по производству ЖБИ, уровни шума на рабочих местах формовочного производства при работе виброагрегатов достигают значений 108-112 дБА, что значительно превышает требования санитарных норм [1].

Связь с научными и практическими заданими. Работа выполнялась как составная часть «Загальнодержавної соціальної програми поліпшення стану безпеки, гігієни праці та виробничого середовища на 2014-2018 роки (Закон України №178 від 4.04.2013 р.)», «Загальнодержавної цільової програми поліпшення стану безпеки, гігієни праці та виробничого середовища на 2012-2016 роки», одобренной Распоряжением Кабинета министров Украины от 31 августа 2011 г. № 889-р. и Декларации Европейского Союза «Об оценке шума в окружающей среде».

Формулировка цели. Для снижения шума виброагрегата предлагается устройство экранно-камерного глушителя в приямке под ним. Для определения шумозащитной эффективности такого глушителя важно знать особенности формирорвания звуковых полей вокруг виброагрегата, находящегося в приямке. Для этой цели в Полтавском национальном техническом университете была сконструирована и изготовлена экспериментальная установка ЭУ-2010 для прямого физического моделирования, общий вид которой представлен на Рис.1.

Основной материал. Исследования особенностей формирования звуковых полей виброагрегатов проводились на базе санитарной лаборатории ООО «Інженерно-впроваджувального центру охорони праці» (г. Полтава).

Целью исследований являлось определение характера и степени влияния на шумовые характеристики виброагрегата:

- изменение ширины зазора между приямком и боковой стенкой виброагрегата путем применения щитков-экранов;
 - взаиморасположение поверхностей вибрагрегата и пола;
- использование виброзвукопоглощающей мастики «Вибромаст» на внутренних поверхностях приямка;

Экспериментальная установка ЭУ-2010 (рис.1) изготовлена из листов OSB толщиной 15 мм. Внутри установки располагается реверберационная камера высокого звукового давления 1 с изменяющимся объемом (от 0,42 до 0,51 м³). Верхнюю часть камеры перекрывает фрагмент виброагрегатом. Все пространство кроме камеры высокого давления и фрагментом виброплощад-

ки заполнено песком. В щели, между перемещающимся по вертикали фрагментом виброплощадки и стендом, вкладывались резиновые прокладки.

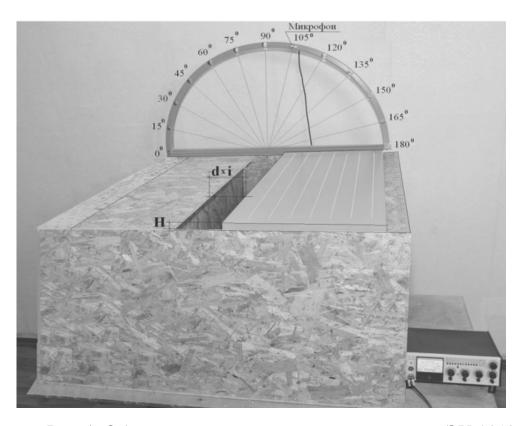
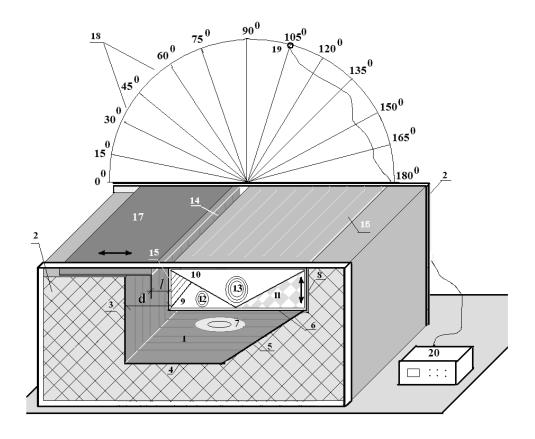



Рис. 1. Общий вид экспериментальной установки ЭУ-2010

1, 9 и 10 - камеры высокого звукового давления; 3 - вертикальная стенка камеры; 4 - пол приямка; 5 - наклонная плоскость; 6 - нижняя поверхность фрагмента виброагрегата; 7, 12, 13 – громкоговорители; 8 – параллелепипед; 11 – часть параллелепипеда заполненная звукопоглощающим материалом; 12 - перфорированная боковая поверхность; 14 – зазор между виброагрегатом и приямком; 16 - верхняя перфорированная поверхность фрагмента; 17 - акустический экран; 18 — направляющая движения микрофона; 19 — измерительный микрофон; 20 - шумомер.

Фрагмент камеры высокого звукового давления (1) ограничен боковыми стенками (2), вертикальной стеной (3), полом приямка (4), наклонной поверхностью (5) и нижней поверхностью фрагмента виброагрегата (6).

Для имитации шума, излучаемого нижней частью виброагрегата, использовался установленный в камере громкоговоритель RCF DU 31 AT (7). В качестве источника импульсов использовался генератор низкочастотных импульсов Γ 3-112.

Фрагмент виброплощадки имеющий форму параллелепипеда (8) выполнен из металла. Внутреннее пространство разделено на три части (9, 10 и 11). Две из них (9 и 10) являются камерами высокого звукового давления, в которых установлены громкоговорители 12 и 13. Третья часть заполнена песком.

Для имитации шума излучаемого боковой стенкой виброплощадки, включался громкоговоритель (12), шум которого поступал через перфорированную боковую поверхность (14) в образованную стенкой приямка (3) и фрагментом виброагрегата (14) зазор экранного – камерного глушителя (15).

Для имитации шума излучаемого верхней поверхностью виброагрегата при заполнении и уплотнении бетонной смеси включался громкоговоритель (13), шум которого, проходя через перфорированную верхнюю поверхность фрагмента виброагрегата (16) поступал в зону измерения шума.

При исследовании влияния ширины зазора, на величину и направленность распространения шума в зону формовочного поста, использовался подвижный в горизонтальном напрвлении акустический экран (17), регулирующий ширину зазора между виброагрегатом и стенкой приямка. Ширина зазора при измерениях устанавливалась размером 0,2; 0,16; 0,08; 0,04 м.

В качестве измерительной аппаратуры использовались шумомер: туре 2235, октавный фильтр туре 1624 фирмы Bruel & Kjaer (Дания) (Свід. про повірку раб. зас. вимір. техн. №22-00/127436.

Для исследования направленности распространения шума в пространство использовалась направляющая (18) движения микрофона (19), с фиксацией его в отверстиях дуги через каждые 15^{0} . Измерения производились в одной полуплоскости при углах от 0^{0} до 180^{0} к горизонту.

Микрофон перемещался в вертикальной плоскости (в зоне прямого звука) по окружности с радиусом $\mathbf{r} = 0.9$ м.

Для случая, когда верхняя плоскость виброагрегата находится в одном уровнем с полом (без обработки мастикой «Вибромаст»).

График (Рис.3) построен для случая, когда скорость распространения воздушного шума равна 341м/c (при температуре 20^{0}C), d — первоначальная ширина зазора. Отношения ширины зазора (l) к длине волны (λ) на различных частотах, представлены в табл.1.

Таблица 1 Отношения ширины зазора к длине звуковой волны для среднегеометрических частот октавных полос

f	λ	d = l = 0.2 M	l = 0.16 M	l = 0,12M	l = 0.08M	l = 0.04 M
125	2,73	0,073	0,058	0,044	0.029	0,014
250	1,36	0,147	0,117	0,088	0,058	0,029
500	0,68	0,294	0,235	0,176	0,116	0,058
1000	0,34	0,588	0,471	0,353	0,232	0,116
2000	0,17	1,176	0,941	0,706	0,464	0,232
4000	0,085	2,353	1,882	1,412	0,928	0,464
8000	0,042	4,762	3,764	2,823	1,856	0,953

∆L(дБ)

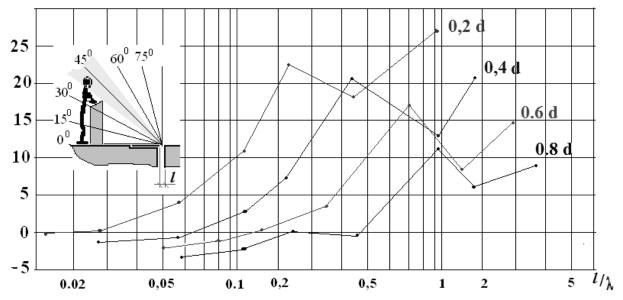


Рис.3. График зависимостей снижения уровней звукового давления в луче под 45^0 к горизонту от ширины зазора между виброагрегатом и стенкой приямка и отношения ширины зазора к длине звуковой волны в октавных полосах частот, построенный по результатам натурных имерений на физической модели ЭУ-2010.

Измерения производились в двух положениях фрагмента виброагрегата (рис.4):

- положение A – поверхность стола виброагрегата совпадает с уровнем пола;

- положение ${\sf F}$ – поверхность стола виброагрегата выше уровня пола на высоту ${\sf H}.$

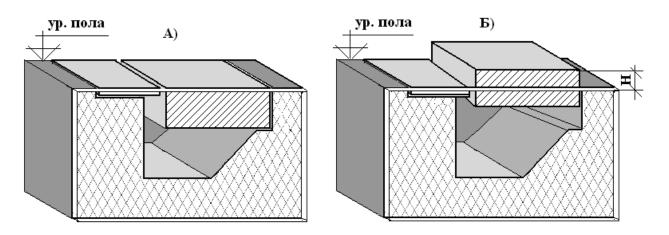


Рис.4. Схемы взаиморасположения фрагментов уровня стола виброагрегата и уровня пола в процессе исследований (A - в уровне пола, Б – выше уровня пола)

Аналогичные исследования были проведены для случаев нахождения поверхности виброагрегата выше уровня пола на высоту Н с обработкой внутренних поверхностей приямка мастикой «Вибромаст» и без нее; с обработкой боковой поверхности виброагрегата мастикой «Вибромаст» и без нее.

Выводы. Анализ результатов исследования показал:

- сужение зазора между стенкой приямка и виброагрегатом от d до 0,2d эффективно работает только в диапазоне высоких частот (начиная с 500 Гц) и увеличивает шумозащитную эффективность на величину до 15 дБ;
- в области низких частот (63 500 Гц) достижения дополнительной существенной шумозащитной эффективности (до 3 5 дБ) можно добиться при условии применения в качестве звукопоглощающего материала на внутренних поверхностях приямка виброзвукопоглощающей мастики «Вибромаст»:
- в случае размещения поверхности виброагрегата выше уровня пола шумозащитная эффективность экранно-камерного глушителя падает на 3 5дБ во всем измеряемом диапазоне частот. Однако, при обработке боковых стенок виброагрегата виброзвукопоглощающей мастикой «Вибромаст» потери практически компенсируются во всем диапазоне частот.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

1. ДСН 3.3.6..037-99. Санітарні норми виробничого шуму, ультразвуку та инфразвуку. – К., 2000. – 27 с.