Строительство, материаловедение, машиностроение

- 3. Колосков В.Н., Олейник П.П., Тихонов А.Ф. Разборка жилых зданий и переработка их конструкций и материалов для повторного использования. М.: Изд-тво АСВ, 2004. 200с.
- Максименко В.А., Некрасова М.А., Шабля В.Ф. Проблемы массовых перепланировок жилого и нежилого фондов в Москве //Промышленное и гражданское строительство. - 1998. - №8. - С.32-33.
- Соловьев В.Е. Опыт санации пятиэтажек в Германии //Строительные материалы, оборудование, технологии XX1 века. - 2002.- №8. - С.28-29.
- 6. Шаленный В.Т., Несевря П.И., Каменев А.С. Исследование технологичности устройства или расширения проемов при реконструкции стен //Сб. научн. трудов. Строительство, материаловедение, машиностроение. Днепропетровск, ПГАСиА. Вып.43. 2007. С.580-585.

УДК 624.073.11:539.371

ОЦЕНКА ОГНЕСТОЙКОСТИ СТАЛЕБЕТОННЫХ ПЕРЕКРЫТИЙ ЗДАНИЙ И СООРУЖЕНИЙ

С.Ю. Берестянская к.т.н., доцент, Украинская государственная академия железнодорожного транспорта г. Харьков.

<u>Постановка проблемы.</u> Сталебетонные конструкции являются более эффективными по сравнению с железобетонными благодаря многофункциональному использованию стального листа. Наибольший эффект от внешнего армирования достигается в изгибаемых в двух направлениях плитах перекрытий и покрытий зданий. Плоский стальной лист работает в условиях двухосного растяжения, благодаря чему повышается жесткость и несущая способность сталебетонных плит по сравнению с железобетонными при одинаковом расходе металла. Внедрение изгибаемых в двух направлениях сталебетонных плит затруднено ввиду недостаточной разработанности методов расчета и проектирования, особенно с учетом высокоинтенсивных термосиловых воздействий, так как конструкция в равной степени должна отвечать не только требованиям прочности, жесткости и трещиностойкости, но и требованиям противопожарной безопасности.

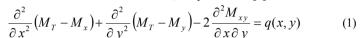
<u>Анализ последних источников.</u> Обзор накопленного материала показал, что характер деформирования и исчерпания несущей способности изгибаемых в двух направлениях сталебетонных плит, подвергающихся не только силовым, но и температурным воздействиям, в том числе и в условиях пожара, исследован недостаточно.

<u>Выделение нерешенных ранее частей.</u> Обзор накопленного материала показал, что характер деформирования и исчерпания несущей способности изгибаемых в двух направлениях сталебетонных плит, которые подвергаются не только силовому, но и термосиловому воздействию, в том числе и в условиях пожара, исследован недостаточно.

Строительство, материаловедение, машиностроение

 Φ ормулировка цели: разработка математического аппарата для расчета напряженно-деформированного состояния сталебетонных плит на силовые и температурные воздействия.

Методика оценки предела огнестойкости состоит в определении времени t, за которое плита теряет несущую способность. В свою очередь, несущая способность характеризуется следующими факторами, имеющими место в какой-либо точке конечно-разностной сетки: прочностью бетона, прочностью стального листа, прочностью контакта [1]. Основные положения теории сталебетонных плит, которая учитывает силовые и температурные воздействия является развитием исследований [1, 2, 3, 4]. Используем условия равновесия элемента сталебетонной плиты, полученные в [3]:



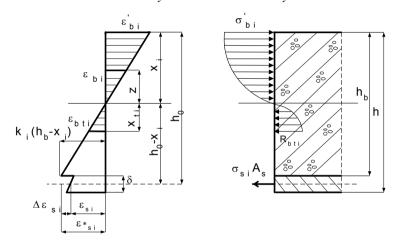


Рис. 1. Деформации в сечении сталебетонного элемента

Температурные изгибающие моменты в бетоне и стальном листе (рис. 1) определяются следующим образом:

$$M_{T} = M_{T}^{b} + M_{T}^{s} ; \qquad (2)$$

$$M_{T}^{b} = -\int_{x_{t}}^{x_{t}} \frac{\alpha_{b} E_{b} (T - T_{0})}{3(1 - \nu_{b})} x \, dx ; M_{T}^{s} = -\int_{h_{b}}^{h_{b} + \delta} \frac{\alpha_{s} E_{s} (T - T_{0})}{3(1 - \nu_{s})} x \, dx ,$$

где T_0 - начальная температура; α_b , α_s - коэффициенты объемного расширения бетона и стали.

79

Моменты M_x , M_y , M_{xy} связаны с жесткостными коэффициентами и кривизнами зависимостями [3]

$$\begin{vmatrix} M_x \\ M_y \\ M_{xy} \end{vmatrix} = \begin{vmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{vmatrix} \begin{cases} K_x \\ K_y \\ 2K_{xy} \end{cases},$$
(3)

$$D_{11} = D_{1} \sin^{2} \alpha + D_{2} \cos^{2} \alpha \; ; \; D_{12} = D_{21} = D_{\mu} \; ;$$

$$D_{13} = D_{31} = D_{23} = D_{32} = (D_{1} - D_{2}) \cos \alpha \cdot \sin \alpha / 2 \; ;$$

$$D_{22} = D_{1} \cos^{2} \alpha + D_{2} \sin^{2} \alpha \; ; \; D_{33} = (D_{1} + D_{2} - 2D_{\mu}) / 4 \; ;$$

$$D_{i} = \overline{x_{i}}^{3} E_{b} / (3(1 - v_{b}^{2})) + \overline{x_{ti}}^{3} E_{bt} / (3(1 - v_{bt}^{2})) + E_{s} A_{s} (h_{0} - x_{i})^{2} \lambda_{i} / (1 - v_{s}^{2}) \; ;$$

$$D_{\mu} = 0.5 (D_{\mu 1} + D_{\mu 2}) \; ;$$

$$D_{\mu i} = v_{b} \overline{x_{i}}^{2} \overline{x_{j}} E_{b} / (3(1 - v_{b}^{2})) + v_{bt} \overline{x_{ti}} \overline{x_{tj}} E_{bt} / (3(1 - v_{bt}^{2})) +$$

$$+ v_{s} E_{s} A_{s} (h_{0} - x_{i}) (h_{0} - x_{j}) \lambda_{j} / (1 - v_{s}^{2}) \; ; \; i = 1, 2; \quad j = 2, 1 \; ;$$

$$K_{x} = -\partial^{2} w / \partial x^{2} \; ; \quad K_{y} = \partial^{2} w / \partial y^{2} \; ; \quad K_{xy} = \partial^{2} w / \partial x \partial y \; , \qquad (4)$$

где A_s - площадь стального листа на единице длины; $E_b, E_{bt}, \nu_b, \nu_{bt}$ - параметры деформирования сжатого и растянутого бетона; E_s, ν_s - параметры деформирования стального листа; λ_i - коэффициент податливости контакта листовой арматуры с бетоном; x_i, x_{ti} - высоты сжатой и растянутой зон.

Для решения задачи о напряженно-деформированном состоянии сталебетонных плит необходимо знать распределение температурновлажностного поля в его сечении. Будем предполагать, что конструкция прогревается равномерно: а) со стороны стального листа; б) со стороны бетона; в) со стороны стального листа и бетона одновременно. В случае равномерного прогрева задача о распределении температуры и влаги сводится к одномерной (рис. 2). Необходимость рассмотрения и влажностного поля связана с наличием влаги в порах бетона, при испарении которой возникает подвижная граница парообразования [2].

В работах [2, 3] на основе анализа уравнения баланса масс в фазах, уравнений движения и уравнений баланса энергии показано, что для микропористых сред с размерами пор $r \le 10^{-7}$ м типа плотных тяжелых бетонов с пористостью порядка 20-30% тепломассообмен описывается следующей системой уравнений:

$$c\rho \partial T/\partial t = \partial/\partial x (\lambda \partial T/\partial x)$$
, $\partial \rho_3/\partial t = (8r/3)\sqrt{R/2\pi M} \partial (\rho_3 \sqrt{T})/\partial x$, (5)

где T - температура твердого каркаса вместе с паром, K; c - удельная теплоемкость бетона; ρ - плотность сухого твердого каркаса; λ - коэффициент теплопроводности сухого каркаса; ρ_3 - плотность пара; M - молярная масса пара; R - газовая постоянная; t - время.

Для каждой схемы температурного воздействия записываются начальные и граничные условия, и путем разностной аппроксимации решается задача тепломасообмена. Зная распределение температурного поля по толщине плиты, по зависимостям (2) определяем температурные моменты, а решением уравнения равновесия (1) с учетом зависимостей (3) методом конечных разностей при шаговом нагружении определяем напряженно-деформированное состояние сталебетонной плиты.

В качестве численного метода решения используется метод конечных разностей МКР. Для этого на серединной поверхности плиты выбирается конечное число точек, распределенных с некоторой закономерностью и представляющих собой узлы конечно-разностной сетки с дискретными координатами. Для каждой точки, полученной таким образом, записывают исходные уравнения равновесия [1, 2], в которых частные производные заменяют приближенными значениями искомой функции прогибов в узлах сетки. При этом использовались обычные уравнения центральных разностей. В результате, непрерывное решение заменяют его дискретными значениями в узлах сетки, а дифференциальное уравнение сводят к системе алгебраических. Выражения для кривизн в соответствии с (4) представляют собой производные второго порядка. Температурные моменты M_T записывались в конечных разностях и после вычислений представляли собой величину, не зависящую от прогиба.

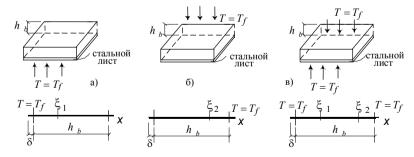


Рис. 2. Расчетная схема сталебетонного перекрытия: температурное воздействие

а) со стороны стального листа; б) со стороны бетона; в) с обеих сторон

При записи разрешающего уравнения для точек на контуре и прилежащих к контуру приходится иметь дело с законтурными значениями функций прогибов, которые увязываются дополнительными (граничными) условиями со значениями этой функции внугри контура. Для всех точек, в том числе контурных и законтурных, использовались центральные разности. Описание граничных условий производится заданием соответствующих значений прогибов и моментов для точек лежащих на контуре и за контуром.

Рассматривается случай шарнирного опирания плиты. В этом случае прогибы на контуре равны нулю и разрешающее уравнение для этих точек не записывается.

При расчете прямоугольных сталебетонных пластин на действие симметричной нагрузки достаточно рассматривать ее четвертую часть при этом накладывается условие равенства прогибов в симметричных точках.

Совокупность разрешающих уравнений, полученных для каждой точки конечно-разностной сетки, с учетом граничных условий, представляют собой систему линейных алгебраических уравнений (СЛАУ) относительно неизвестных значений прогибов. Решение СЛАУ выполнялось методом Гаусса, для чего использовалась стандартная подпрограмма. В результате решения СЛАУ находит значения функции прогибов.

Моделирование процесса деформирования сталебетонной плиты под нагрузкой, осуществлялось шагами в 10 кH/м². Лействие температуры учитывалось по уравнению стандартного пожара и моделировалось как добавка к нагрузке в каждой точке конечно-разностной сетки. Температурные поля определялись с интервалом времени до испарения влаги – 0,67 мин., после испарения – 1.67 мин.

Предел огнестойкости конструкции характеризуется ее способностью сопротивляться температурным воздействиям и определяется временем t, за которое плита теряет несущую способность. В свою очередь, несущая способность характеризуется следующими факторами, имеющими место в какой-либо точке конечно-разностной сетки: прочностью бетона, прочностью стального листа, прочностью контакта [1].

Для численных расчетов было использовано сталебетонное перекрытие 6000x6000 мм толщиной h $_{b}$ =300 мм из бетона прочностью R $_{b}$ =20 МПа. Перекрытие армировалась плоским листом толщиной δ=3 мм из стали с физическим пределом текучести $\sigma_{\rm r}$ =235 МПа. Начальные значения модуля упругости бетона и стали $E_b=3,30x10^4$ и $E_s=2,06x10^5$ МПа. Нагрузка на перекрытие была принята равномерно распределенная. Объединение стального листа с бетоном выполнялось наклонными петлевыми анкерами и имело жесткость ξ =80 кH/м³ [3, 4].

Результаты расчетов приведены в табл. 1. из которой видно, что при температурном воздействии сверху обеспечивается требуемый предел огнестойкости согласно СНиП 2.01.02-85* до нагрузки 90% от разрушающей. При огневом воздействии со стороны стального листа и с обеих сторон несущая способность не обеспечивается даже при минимальной нагрузке. В этом случае необходимо предусматривать защиту конструкции от температуры. Как видно из табл. 2, тип защитного слоя значительно

Строительство, материаловедение, машиностроение

увеличивает огнестойкость сталебетонного перекрытия при действии пожара со стороны стального лита. Так, например, огнестойкость перекрытия при нагрузке 10 кН/м2 с защитным слоем из минераловатных плит h=40 мм – 58,3 мин. Этот способ защиты может быть рекомендован для зданий, соответствующих II степени огнестойкости.

Огнестойкость сталебетонного перекрытия при нагрузке 10кН/м2 с защитным слоем из асбестоцементных плит h=500 мм - составляет 66,7 мин., пементно-стружечных плит h=200 мм составляет 95.8 мин.. с запиитным слоем из минераловатной плиты h=100 мм – 143 мин., с защитным слоем из легкого бетона h=30 мм - 95,8 мин. Эти способы защиты могут быть рекомендованы для зданий соответствующих I степени огнестойкости.

Таблица 1. Зависимость несущей способности сталебетонного перекрытия от схемы температурного воздействия

	Нагрузка (кН/м²)								
	10	20	30	40	50	60	70		
Пожар сверху	218	191	174	157	141	100	0		
Пожар снизу	30	18.3	13.3	8.33	6.67	1.67	0		
Пожар сверху и									
снизу	28	17	11.7	6.67	5	0.67	0		

Таблииа2. Зависимость несущей способности сталебетонного перекрытия от вида температурной защиты

	Нагрузка (кН/м²)										
	10	20	30	40	50	60	70				
$A \coprod h = 0.05$	66.7	58.3	33.3	20.8	12.5	0.167	0				
ЛБ h = 0.03	95.8	79.2	70.8	56.7	34.9	0.167	0				
$MB \ h=0.04$	50	45.8	41.7	37.5	25.7	0.167	0				
MB h=0,10	128	105	83.8	62	45.5	0.167	0				
ЦС h=0,02	95.8	74.6	41.7	33.3	4.17	0.167	0				
без защиты	30	18.3	13.3	8.33	6.67	0.167	0				

Выводы Разработанный математический аппарат позволяет определить предел огнестойкости, оценить напряженно-деформированное состояние и несущую способность сталебетонных плит при силовых и температурных воздействиях, в том числе – и при различных условиях пожара. Полученные результаты могут быть использованы для расчета сталебетонных перекрытий строительных сооружений.

- 1. Чихладзе Э.Д., Арсланханов А.Д. Напряженно-деформированное состояние сталебетонных плит // Строительная механика и расчет сооружений. 1990. №2. С. 22-26.
- 2. Жакин А.И., Чихладзе Э.Д., Веревичева М.А. Теория тепломассообмена в пористых средах // Изв. ВУЗов. Строительство. 1998. №1. С. 111-116.
- 3. Огнестойкость бетонных и сталебетонных конструкций. Харьков, Сб. трудов ХарГАЖТ, вып. 40, 2000. 97с.
- Чихладзе Э.Д., Арсланханов А.Д. Несущая способность сталебетонных плит // Бетон и железобетон. – 1990. – №10. – С. 30-31.

УДК 624.014

МЕТОДИКА ВИЗНАЧЕННЯ ДОТИЧНИХ НАПРУЖЕНЬ В СТАЛЕВИХ БАЛКАХ ЗІ ЗМІННИМ ПЕРЕРІЗОМ

С.І.Білик, к.т.н., доцент

Київський національний університет будівництва і архітектури, м. Київ

Постановка проблеми. В балках зі змінним перерізом дотичні напруження змінюються по висоті перерізу не так як в балках з постійним перерізом [2,5]. Встановлено, що у двотаврових клиноподібних балах зі змінною висотою стінки в залежності від навантаження дійсні дотичні напруження по стику стінки і полиць більші ніж за традиційним розрахунком [4,6].

Аналіз основних досліджень, публікацій і невирішених задач. В дослідженях Мітчелла [2,5] встановлено, що консольній клиноподібній пластині при знгині дотичні напруження приймають максимальні значення в крайніх волокнах. Особливий вплив поперечних сил на напруженодеформований стан сталевих елементів змінного перерізу відмічено в [1,3,4]. В роботах [6,7] на підставі загальних робочих гіпотез теорії опору матеріалів отримано підхід, за яким стало можливим визначати дотичні напруження в клиноподібних балках зі змінною висотою прямокутного перерізу.

Формування цілей. Розробити загальну методику визначення дотичних напружень в двотаврових балках зі змінною висотою стінки при різних відношеннях висот кінцевих перерізів за робочими гіпотезами лінійної зміни нормальних напружень щодо висоти балки.

Виклад основного матеріалу досліджень. Розглянуто консольно защемлену двотаврову балку зі змінною висотою перерізу. Полиці балки мають нахил під кутом α_n до центральної поздовжньої осі симетричного перерізу. Прийнято лінійне зростання висоти перерізу балки.

$$h_{cz} = h_{c0} (1 - \gamma_h z / l) \rightarrow \gamma_h = 1 - \frac{h_{cn}}{h_{c0}}$$
 (1)

Строительство, материаловедение, машиностроение

Момент інерції площі перерізу ($I_{\chi z}$) та статичний момент відокремленої частини ($S_{\chi z}$) записано з урахуванням зміни висоти перерізу (1) і поточної координати по висоті перерізу стінки y_a .

$$S_{xz} = (1 - \gamma_h z/l) b_f t_f (\frac{h_{c0}}{2}) + 0.5 t_{\omega} (\frac{h_{c0}}{2})^2 (1 - \gamma_h z/l)^2 - 0.5 t_{\omega} y_c^2;$$

$$I_{xz} = [2(1 - \gamma_h z/l)^2 b_f t_f (\frac{h_{c0}}{2})^2 + t_{\omega} \frac{h_{c0}^3}{12} (1 - \gamma_h z/l)^3]. \tag{2}$$

В основу досліджень покладені робочі гіпотези про характер розподілення дотичних напружень в балках [4,6]. Прийняті гіпотези справедливі, якщо ширина стінки балки набагато менша за ширину полиці t_w << h.

Згинальний момент прийнято розглядати в декартовій системі координат, яка розташована в центрі ваги максимального за розмірами перерізу:

$$M_{yz} = Pl(1-z/l) = M_0(1-z/l)$$
 (3)

В роботах (4,6) отримана диференціальна рівняння дотичних напружень в залежності від навантаження та змінних геометричних характеристик перерізу.

$$\tau = -\frac{1}{t_{w}} \left(\frac{M_{xzi} S_{xzi}}{I_{xzi}} \right)'.$$

$$\tau = -\frac{1}{t_{w}} \left[Pl(1 - z/l) \right]' \frac{S_{xzi}}{I_{xz}} - \frac{1}{t_{w}} \left[Pl(1 - z/l) \right] \left(\frac{S_{xzi}}{I_{xz}} \right)';$$

$$\tau = \frac{QS_{xzi}}{t_{w} I_{xz}} - \frac{M_{xz}}{t_{w}} \left(\frac{S_{xzi}}{I_{xz}} \right)'.$$
(5)

Перший доданок у формулі (5) є вираз для визначення дотичних напружень за формулою Журавського, а другий поправка на змінність перерізу. При постійних геометричних характеристиках перерізу по довжині балки формула (4) автоматично переходе до відомої формули.

Після диференціювання відношення (4) перейде до такого вигляду.

$$\tau = \frac{P[(1-\gamma_{h}z/l) \ b_{f}t_{f}(\frac{h_{co}}{2}) + 0.5t_{\omega}(1-\gamma_{h}z/l)^{2}(\frac{h_{co}}{2})^{2} - 0.5t_{\omega}y_{c}^{2}]}{t_{\omega}I_{xz}} -$$

$$-\gamma_h \frac{Pl(1-z/l)}{t_{\omega}l(1-\gamma_hz/l)} \frac{[b_ft_f(\frac{h_{co}}{2})(1-\gamma_hz/l)[I_{xz}-I_{x\omega z})]+0.5t_{\omega}(1-\gamma_hz/l)^2(\frac{h_{co}}{2})^2I_{x\omega z}]}{I_{xz}^2} +$$

$$+ \gamma_h \frac{Pl(1-z/l)}{t_{\omega l}(1-\gamma_h z/l)} \frac{0.5 t_{\omega} y_c^2 (2I_{xz} + I_{x\omega z})}{I_{xz}^2}.$$