539.3

$$\Delta \sigma = \sigma_{\max} - \sigma_{\min} \tag{1}$$

 $\sigma_{
m max}$, $\sigma_{
m min}$ -

$$t = t_0$$
 ($t_0 = 0$) - (.1) $a_0 = l_0$.

,

$$\sigma(t)$$
 () [1]

$$\frac{da}{dN} = f(a,\sigma), \qquad (2)$$

$$a\Big|_{N=N^k} = a_* \quad , \tag{3}$$

$$N^{k} - ,$$

 $a/_{N=0} = a_{0} \qquad a_{*} . \qquad a_{*}$

$$K_{\max} = K_{IC},$$
 (4)

K_{max} -[2, 3]

n, A -

,

$$K(a) = \sigma_{\sqrt{\pi a}} Y(\lambda); \ \lambda = \frac{a}{b},$$
(5)

$$Y(\lambda) - ; K_{IC} - '$$
(3)

$$[0; N^*]$$

,

[2, 3]

$$Y(\lambda) = 1,99 - 0,41\lambda + 18,7\lambda^{2} - 38,48\lambda^{3} + 53,85\lambda^{4}$$

$$\lambda < 0,7.$$

$$Y$$

$$\lambda = \frac{\lambda}{1000}$$

$$A = \frac{1000}{1000}$$

 $f(a,\sigma) = A(\Delta K)^{n}, \qquad (6)$ $\Delta K = 1,12 \ \Delta \sigma \sqrt{\pi a} \ .$

$$\frac{da}{dN} = A \left(1,12(\sigma_{\max} - \sigma_{\min}) \sqrt{\pi a} \right)^n.$$
(7)

 N_* ,

(7)

[2]

$$N_* = \frac{2}{\beta(2-n)} \left(\sqrt{a_*^{2-n}} - \sqrt{a_0^{2-n}} \right), \tag{8}$$

$$\beta = A(1,12\sqrt{\pi}(\sigma_{\max} - \sigma_{\min}))^n .$$
(9)

 $K_{\rm max}$

$$K_{\max} = 1,12 \,\sigma_{\max} \sqrt{\pi a} \,. \tag{10}$$

_

(10) (4)

•

$$a_* = \left(\frac{K_{\max}}{1, 2\sqrt{\pi}\sigma_{\max}}\right)^2 = \left(\frac{K_{IC}}{1, 12\sqrt{\pi}\sigma_{\max}}\right)^2.$$
 (11)

1. ,
$$a_0$$
 , « -
 l_0 ». [5]
 $a - , [4]$ (g) -
 N_* N_* $N_*^f(a_2, b_2, c_2)$. -
 $N_*^d = \frac{1}{4}(a_2 + 2b_2 + c_2)$
EVM - [5]. , -
 $\sigma_T = 700 / ^2$, $K_{IC} = 530 / ^{1/2}$.
 $\sigma_{max} = 320 - 2$. $\sigma_{min} = 175 - 2$.

			[2]			A n	-
ł	$4 = 3,553 \cdot 10^{-1}$	$^{-13}$; $n = 2,95$.					
$a_0 \approx 7,6$,		1.	
				$a_0^{f}iN_*^{f}$,			
(2) - (3)		(8), (9),		- N	d .		
	1		:				-
1				aract	()
				$(N^{exact} = 818)$	389).		
		1					-
()		$(N^{exact} = 81889).$			
							1
		a_0^f	a_1	b_1	c_1	N^d_*	
		a_0^f	6,1	7,6	9,1		
	1	N^{f}_{*}	95741	81889	71570	80271	
			a_1	b_1	c_1		
- 6						1	

	N_*^{J}	95741	81889	71570	80271
		a_1	b_{1}	C_1	
	a_0^f	7	7,6	8,5	
2	N^{f}_{*}	86901	81889	75374	81513
		a_1	b_1	C_1	
	a_0^f	7,4	7,6	8	
3	N_*^{f}	83493	81889	78860	81532

2.

 $\sigma_{
m max}$, $\sigma_{
m min}$, a_0 ,

 $\sigma_{\max} \ \, (310,320,340) \ \, ; \ \, \sigma_{\min} \ \, (160,175,180) \ \, ; \ \, a_0(5;7,6;9) \, .$

$$\alpha$$
 - ,
 $\sigma_{\text{max}} = \frac{0.5}{315} + \frac{1}{320} + \frac{0.5}{330};$
(12)

,

$$\sigma_{\min} = \frac{0.3}{164.5} + \frac{1}{175} + \frac{0.3}{178.5};$$
(13)

$$a_0 = \frac{0.2}{5.52} + \frac{1}{7.6} + \frac{0.2}{8.72} \,. \tag{14}$$

,

$$\Delta \sigma = \frac{0.3}{136.5} + \frac{0.5}{140} + \frac{1}{145} + \frac{0.5}{155} + \frac{0.3}{165}$$
(15)

$$\begin{split} \Delta \sigma \times a_0 &= \frac{0,2}{(136,5;5,52)} + \frac{0,3}{(136,5;7,6)} + \frac{0,2}{(136,5;8,72)} + \frac{0,2}{(140;5,52)} + \frac{0,5}{(140;7,6)} + \\ &+ \frac{0,2}{(140;8,72)} + \frac{0,2}{(145;5,52)} + \frac{1}{(145;7,6)} + \frac{0,2}{(145;8,72)} + \frac{0,2}{(155;5,52)} + \frac{0,5}{(155;7,6)} + (16) \\ &+ \frac{0,2}{(155;8,72)} + \frac{0,2}{(165;5,52)} + \frac{0,3}{(165;7,6)} + \frac{0,2}{(165;8,72)}. \end{split}$$

$$a_*^f = \frac{0.5}{71.8} + \frac{1}{69.6} + \frac{0.5}{65.4} \tag{17}$$

$$N_*^f = \frac{0.2}{122530} + \frac{0.3}{97863} + \frac{0.2}{88357} + \frac{0.2}{113712} + \frac{0.5}{90820} + \frac{0.2}{81998} + \frac{0.2}{102530} + \frac{1}{81889} + \frac{0.2}{79934} + \frac{0.2}{84218} + \frac{0.5}{67264} + \frac{0.2}{60730} + \frac{0.2}{70034} + \frac{0.3}{55935} + \frac{0.2}{50501}.$$
(18)

$$w_i \, \text{EVM} - \, , \, [5],$$

$$w_{1} = \frac{1}{2} (\mu_{1} + \max_{1 \le j \le m} \mu_{j} - \max_{1 < j < m} \mu_{j});$$

$$w_{i} = \frac{1}{2} (\max_{1 \le j \le i} \mu_{j} - \max_{1 \le j \le i} \mu_{j} + \max_{i \le j \le m} \mu_{j} - \max_{i \le j \le m} \mu_{j});$$

$$i = 2, 3, ..., m - 1;$$

$$w_{m} = \frac{1}{2} (\max_{1 \le j \le m} \mu_{j} - \max_{1 \le j \le m} \mu_{j} + \mu_{m}); \sum_{i=1}^{m} w_{i} = 1.$$
(19)

- - . . .- .: ,1990.
- 4. Rutkowska D., Pilinski M., Rutkowski L. Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, Warsaw,Lodz, 1999.
- 5. Liu B. Theory and Practice of Uncertain Programming, Heidelberg: Physica – Verlag Springer – Verlag Company – 2002.- 416 p.