669 [1,2]. , [1,2]. 60,08,08,08,18,10, -57, (900-1200°) -5 $V_1 \ 800, \ V_2 \ 1680 \qquad V_3 \ 2000 \qquad /$. [1,2]. [1,2]. $\begin{array}{ll} (\eta\,, & _{\epsilon})\\ . \ 1). \end{array}$ (, () • Al₂O₃, TiCN, MnO.Al₂O₃ () η () – (-1) (. 1). $900^0~-$, , 1 . 1). (900⁰ (1), 2 " ,, η $_{\epsilon}$ (. 1). 2

η

()

900⁰

,

.1

8

t, ⁰C, η, ε 2 2 , 1 _ ε,% 2 3 5 1 4 6 TiCN, 08T; 1,9 1,7 2,8-3,8 η $MnO^{-}Al_2O_3$, 25, 2,9 2,7 3,8-4,8 ε 60,08 12 -1 η() --0 -ε() FeO.SiO₂, 2,1 1.8 3,6-4,2 η 4,6-5,2 MnO.SiO₂, 25, 3,1 2,8 ε 60,08 8 FeO.SiO₂, -0,4 -0,4-+0,5 2,8-3,0 η MnO.SiO₂, 600, 0,6 0,6-1,5 3,8-4,0 ε 60,08 12 TiCN, 08T; 2,0 2,8-3,8 2,8-3,8 η MnO.Al₂O₃, 3,0 3,8-4,8 3,8-4,8 1100. ε 60,08 8 0 η() -1 _ε() FeS-(Fe,Mn)S, 1100, 3,6 3,9 η -57,60 12 4,6 4,9 3 η() --_ ε()

1(1) 2(2)

1,

 $; \eta = -1, \epsilon = 0.$

,

(. 2)

800 (V₁), 1680 (V₂)

2000 (V₃) /

	\mathbf{V}_2								
	t, ⁰								
	1000			1100		1200			
	V_1	V ₂	V_3	V_1	V ₂	V ₃	V1	V_2	V ₃
$\begin{array}{c} Al_2O_3 \ , \\ MnO{\cdot}Al_2O_3 \left(60 \right) \end{array} \right)$	6	8	6	7	10	8	9	15	11
Fe S -(Fe, Mn)S (-57)	12	17	15	13	18	16			
$\begin{array}{c} \text{MnO} \cdot \text{SiO}_2 \\ (60 \ , \ -57) \end{array}$	7	8	8	14	17	16	16	21	17
TiN-TiCN (08)	-	7 - 9	-	-	9 - 11	-	-	14 - 16	

,

(. 3).

,

,

3

 1000^{0}

800 (V₁), 1680 (V₂) 2000 (V₃) /

,	V_1	V ₂	V ₃
Al_2O_3 , $MnO \cdot Al_2O_3(60)$	6,3	5,8	3,2
(Fe, Mn)S (60)	2,6	1,5	1,1
$MnO \cdot SiO_2$,(60)	2,7	1,8	1,2
Fe S –(Fe, Mn)S, (-57)	3,1	2,0	1,5

•

213

(Fe,

[1,2]

(. 4)

 (1100^{0})

800 (V₁), 1680 (V₂) 2000 (V₃) /

-

,

	-	_			, %,
-	-		-		
%	,			-	-
4,2	800		78,2	10,5	11,3
	1680	Al_2O_3	80,0	11,3	8,7
	2000		80,9	11,0	8,1
12,8	800		82,6	8,0	9,4
	1680		84,5	8,4	7,1
	2000		80,3	7,5	12,2
4,2	800		70,4	11,0	18,6
	1680	(Mn, Fe)S	77,4	11,6	11,0
	2000		72,1	12,2	15,7
12,8	800		82,1	7,8	10,1
	1680		82,5	8,1	9,4
	2000		82,4	8,2	9,4

«

ε,

,

«

»

»η

[1].

1

 $\eta_{\cdot}\epsilon_{\cdot}$

4.

214

,

η

ε

,

- , (. 5).

ε,

5. 8

[1].

-

η

,	,%	η, ε	, ,		
			1000	1100	1200
TiCN, 08	12	η	2,5	2,8	3,4
		ε	3,5	3,8	4,4
MnO.Al ₂ O ₃ , 08	12	η	2,6	2,9	3,4
		ε	3,6	3,9	4,4
FeS-(Fe,Mn)S,	8	η	3,7		
-57		ε.	4,7		
FeO·SiO ₂ -	8	η	3,0	3,4	
MnO·SiO ₂ , 08		ε	4,0	4,4	
			2, -	,	

ε	
-	

).

η

,

