УДК 620.1:66.017:669.14

МЕХАНИЗМ ПЕРИТЕКТОИДОПОДОБНОГО ПРЕВРАЩЕНИЯ ПРИ ОБЕЗУГЛЕРОЖИВАНИИ БЫСТРОРЕЖУЩЕЙ СТАЛИ

А. В. Мовчан, к. т. н., С. И. Губенко, д. т. н., проф., А. П. Бачурин, к. т. н., доц., Е. А. Черноиваненко, асп.

Национальная металлургическая академия Украины

Диффузионное изменение состава многокомпонентных сплавов при постоянных температуре и давлении может привести к превращениям с участием трех и более фаз. Разработка и совершенствование технологических процессов получения теплостойких и износостойких композиционных материалов на базе литых быстрорежущих сталей, подвергнутых комплексной химикотермической обработке (обезуглероживание + науглероживание) [1-3], вызывают необходимость изучения закономерностей формирования структур в процессе этих обработок.

Известно, что при науглероживании ферритных сплавов железа с карбидообразующими α -стабилизаторами (W, Mo, Cr, V, Ti) возможно протекание трехфазной реакции $\alpha \rightarrow \gamma$ +Карбид(K) [4-5]. В результате формируется эвтектоидоподобные структуры, состоящие из аустенита (или продукт его превращения) и специального карбида. От классического эвтектоида данные структуры отличает то, что их образование стимулировано не изменением температуры, а изменением концентрации углерода. Условием протекания эвтектоидоподобного превращения является прохождение изменяющегося состава сплава через ферритную вершину конодного треугольника α + γ +K на изотермическом сечении диаграммы состояния Fe-C-Карбидообразующий элемент. Эвтектоидоподобное превращение было реализовано в системах Fe-W, Fe-Mo, Fe-Cr, Fe-V, Fe-Ti, а также в сложных системах, в которых концентрация легирующих элементов соответствовала стандартным быстрорежущим сталям, а концентрация углерода не превышала 0,1% [4-5].

Целью данной работы было изучение механизмов протекания перитектоидоподобного превращения в приповерхностном слое стали P18 при обезуглероживании.

Для стали P18 при обезуглероживании при температурах ниже 1070°C возможно последовательное протекание двух перитектоидоподобных реакций $\gamma+M_6C\rightarrow\alpha$ и $\alpha+M_6C\rightarrow$ Fe₂W, что подтверждается методами микроструктурного и рентгеноструктурного анализов [6].

Важным процессом, происходящим при химико-термической обработке является диффузионное перераспределение компонентов при многофазных превращениях. Рассмотрим особенности перитектоидоподобного превращения, продуктом которого является интерметаллид Fe₂W (µ-фаза) (рис. 1а). Когда при обезуглероживании состав стали P18 достигает стороны конодного

«Стародубовские чтения - 2012»

треугольника fc равновесие становится трехфазным. Последующее обеднение стали углеродом приводит к зарождению и росту µ-фазы. Состав сосуществующих в равновесии фаз определяется точками f, e, c, расположенными в вершинах конодного треугольника. Концентрация вольфрама в образовавшемся интерметаллиде имеет промежуточное значение между α -фазой и карбидом M_6C . Следовательно, данное превращение подобно перитектоидному, но стимулируется диффузионным изменением состава и требует диффузионного перераспределения компонентов между фазами. Направления диффузионных потоков исследовали методами геометрической термодинамики [7].

Рис. 1. Схемы участка изотермического сечения тройной диаграммы состояния Fe-W-C при температуре 1010°C (а) и схема перераспределения потоков атомов вольфрама в процессе превращения (б, в)

Протекание перитектоидоподобного превращения возможно по двум механизмам. В первом случае превращение сопровождается в полной изоляцией карбида M_6C оболочкой µ-фазы (рис. 2а). При этом перераспределение вольфрама между ферритом и карбидом будет осуществляться через µ-фазу. Коэффициент диффузии углерода в феррите на четыре порядка выше, чем вольфрама, поэтому превращения контролируются диффузией атомов вольфрма. При обезуглероживании, когда состав исследуемой стали обедняется углеродом до точки 1 (рис. 1а), содержание вольфрама в феррите на границе с карбидом M_6C определяется экстраполяцией линии bf в сторону меньших концентраций углерода (точка 2). Состав феррита на границе с интерметаллидом Fe_2W (µфаза) определяется точкой 3, а состав интерметаллида на границе с ферритом можно определить точкой 4, используя коноду 3-4. Содержание вольфрама в интерметаллиде на границе с карбидом M_6C можно определить перпендикуляром, опущенным из точки 4 до его пересечения с линией ек (точка 5). Таким

Строительство, материаловедение, машиностроение

образом в интерметаллиде Fe₂W (µ-фаза) создается градиент концентрации вольфрама. Карбид M₆C, теряя вольфрам и углерод, превращается в интерметаллид, в интерметаллид превращается и феррит по мере диффузионного поступления вольфрама (α +M₆C \rightarrow Fe₂W). Схема диффузионных потоков вольфрама показана на рис. 16.

Рис. 2. Схемы механизмов перитектоидоподобного превращения в случае полной изоляции карбида оболочкой µ-фазы (а) и сохранения контакта между всеми тремя фазами (б)

Кинетика роста диффузионных слоев в этом случае определяется перемещением межфазных поверхностей раздела. Скорость перемещения поверхности раздела фаз определяется уравнением:

$$V_{i \to j} = \frac{J^{i-j} - J^{i-j}}{\Delta C^{i-j}} \tag{1},$$

где ΔC^{i-j} – перепад концентраций компонента у межфазной поверхности;

J^{i-j}, J^{i-j} – плотность диффузионного потока компонента соответственно в і и ј фазах у межфазной поверхности, определяется согласно первого закона Фика:

$$J = \frac{\partial m}{\partial \tau} = -D \cdot \frac{\partial C}{\partial x}$$
(2),

где $J = \frac{\partial m}{\partial \tau}$ - плотность диффузионного потока в направлении х; $\frac{\partial C}{\partial x}$ - градиент концентрации; D – коэффициент диффузии.

Основываясь на уравнение (2) определяем поток атомов вольфрама в направлении от феррита к интерметаллиду $Fe_2W(\mu$ -фаза) (3) и в обратном на-

правлении (4) соответственно:

$$J_W^{\alpha-\mu} = D_W^{\alpha} \cdot \frac{dX_W^{\alpha}}{dx}$$
(3)

$$J_W^{\mu-\alpha} = D_W^{\mu} \cdot \frac{dX_W^{\mu}}{dx} \tag{4}$$

Скорости перемещения межфазной границы интерметаллид Fe_2W (µфаза) – феррит и растворения карбида M_6C согласно (1) с учетом уравнений (3), (4) соответственно равны:

$$V_{\mu\to\alpha} = \frac{dX}{d\tau} = \frac{D_W^{\alpha} \cdot \frac{dX_W^{\alpha}}{dx} \left| \alpha / \mu + D_W^{\mu} \cdot \frac{dX_W^{\mu}}{dx} \right| \mu / \alpha}{X_W^{\mu/\alpha} - X_W^{\alpha/\mu}}$$
(5)

$$V_{\mu \to M_{6}C} = \frac{dX}{d\tau} = \frac{D_{W}^{\mu} \cdot \frac{dX_{W}^{\mu}}{dx} |\mu/M_{6}C}{X_{W}^{M_{6}C} - X_{W}^{\mu/M_{6}C}}$$
(6)

Во втором случае, если сохраняется контакт между всеми тремя фазами, то диффузионная доставка вольфрама к зародившемуся и растущему интерметаллиду осуществляется через феррит (рис. 2б). Концентрация вольфрама в феррите на границе с карбидом, в феррите на границе с интерметаллидом и в интерметаллиде на границе с ферритом, как и в первом случае, определяется соответственно точками 2, 3, 4, в то время как концентрация вольфрама в карбиде M_6C на границе с ферритом определяется точкой 6 (рис. 1а). В результате, в феррите при обезуглероживании создается градиент концентрации вольфрама, обеспечивающий его диффузионный поток от карбида к интерметаллиду Fe₂W (µ-фаза) (рис. 1в).

Для данного механизма перитектоидоподобного превращения скорость перемещения межфазной границы интерметаллид Fe_2W (µ-фаза) – феррит, как и в первом случае, определяется согласно уравнению (5), а скорость растворения карбида M_6C соотвественно равна:

$$V_{\alpha \to M_6C} = \frac{dX}{d\tau} = \frac{D_W^{\alpha} \cdot \frac{dX_W^{\alpha}}{dx} |\alpha / M_6C}{X_W^{M_6C} - X_W^{\alpha / M_6C}}$$
(7)

На примере системы Fe-W-C показана возможность протекания трехфазных перитектоидоподобных реакций при обезуглероживании в изотермических условиях, в случае присутствия трехфазной области, ограниченной конодным треугольником, на изотермическом сечении диаграммы состояния Fe-W-C. Перитектоидоподобные превращения в изучаемой стали могут проходить по двум механизмам, отличающимся характером диффузионных потоков, а также контакта фаз, участвующих в превращении.

Использованная литература

1. Структурные и химические изменения в приповерхностном слое стали Р18 при обезуглероживании / Мовчан Е.А., Губенко С.И., Бачурин А.П. // Строительство, материаловедение, машиностроение: Сб. научн. трудов. Вып. 48, ч. 1, - Дн-вск, ПГАСА, 2009. – С. 142-145.

2. Применение химико-термической обработки с целью повышения стойкости литого режущего инструмента // Губенко С.И., Бачурин А.П., Мовчан Е.А. // Вестник Днепропетровского университета. Серия Ракетнокосмичекская техника». – Вип. 14. – т. 2. – 2010. – с. 36-40.

3. Комплексная химико-термическая обработка инструмента из литой быстрорежущей стали P6M5 / Губенко С.И., Мовчан А.В., Бачурин А.П., Черноиваненко Е.А. // Строительство, материаловедение, машиностроение: Сб. научн. трудов. Вып. 58. - Дн-вск, ПГАСА, 2011. – С. 216-218.

4. Бунин К.П., Мовчан В.И., Педан Л.Г. Структурообразование при изотермическом науглероживании железных сплавов, легированных молибденом и вольфрамом // Изв. АН СССР. Металлы. – 1975. – №3. – с.164–168.

5. Мовчан А.В., Бачурин А.П., Педан Л.Г. Многофазные превращения при диффузионном изменении содержания углерода в железных сплавах // Доп. НАН України. – 2000. – №7. – с.104–108.

6. Превращения при обезуглероживании стали Р18 / Бачурин А.П., Губенко С.И., Мовчан Е.А. // Теория и практика металлургии. – 2008. –№3. – с.60–64.

7. Жуков А.А. Геометрическая термодинамика сплавов железа. М.: Металлургия, 1979. – 232 с.