УДК 621.317

ОПРЕДЕЛЕНИЕ УГЛОВ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ КЕРНООТБОРНИКА И СЛОЕВ ПОРОДЫ КЕРНА В НАКЛОННЫХ СКВАЖИНАХ

И. В. Рыжков, к. т. н., доц., Е. А. Пономарева, ас.

ГВУЗ «Приднепровская государственная академия строительства и архитектуры»

Для анализа возможностей нефтеотдачи скважины требуется знание подстилающих слоев и осадочной структуры породы, в которых пробурена скважина. Необходимо знать углы падения пласта и направление углов наклона относительно неподвижной, связанной с Землей, системы координат, в которой отображается скважина и окружающая ее порода. Это позволяет определять местоположение куполов и ловушек, в которых сосредоточена нефть, а также смоделировать расположение продуктивного пласта для определения его потенциальной нефтеотдачи или увеличения добычи нефти [1,2,3]. Ориентированный отбор керна позволяет выявить пространственное расположение коллектора, получить информацию о трещиноватости и расположении подстилающих пород, их проницаемости и пористости.

В данной статье описывается методика определения углов пространственной ориентации керна и его слоев в наклонно-направленных скважинах.

Инклинометр керноотборника, работоспособный в процессе бурения, позволяет определять не только пространственное положение скважины – ее азимут, зенитный угол, но и положение резца, наносящего отметину на теле керна. Это позволяет при дальнейшем лабораторном исследовании керна определить пространственное расположение слоев и трещин керна относительно векторов ускорения свободного падения и напряженности магнитного поля Земли для восстановления пространственной структуры слоев породы, окружающих скважину. Инклинометр располагается внутри керноприемной трубы на амортизаторах, позволяющих снизить вибрационные и ударные перегрузки, возникающие при бурении.

Инклинометр измеряет проекции векторов напряженности магнитного поля Земли и ускорения силы тяжести на ортогональные оси скважинного снаряда посредством трех феррозондов и акселерометров для определения магнитного азимута, зенитного и визирного углов. Первичные датчики – феррозонды и акселерометры, не имеют подвижных элементов, а потому обладают высокой надежностью и вибро-ударопрочностью [4,5,6,7].

С керноотборником жестко связан инклинометр. Обозначим через 0, x_3 , y_3 , z_3 прямоугольную декартову систему координат, образованную осями чувствительности первичных датчиков инклинометра, а через 0, x_4 , y_4 , z_4 систему координат, связанную с корпусом керноотборника, ось 0 x_4 которой проходит через середину основания резца (метки) керноотборника (рис.1).

Рис. 1. Система координат керноотборника

Система координат 0, x_3 , y_3 , z_3 получается из системы 0, x_4 , y_4 , z_4 поворотом последней вокруг оси z_4 на угол σ . Эти системы координат связаны между собой формулами:

$$\begin{bmatrix} x_4 \\ y_4 \\ z_4 \end{bmatrix} = \begin{bmatrix} \cos\sigma & -\sin\sigma & 0 \\ \sin\sigma & \cos\sigma & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix},$$

$$\begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} = \begin{bmatrix} \cos\sigma & \sin\sigma & 0 \\ -\sin\sigma & \cos\sigma & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_4 \\ y_4 \\ z_4 \end{bmatrix}.$$
(1)

При отборе керна резец керноотборника оставляет на теле керна след – кривую L (рис. 2).

Отметим, что точка M на кривой L задает положение «подвижной системы координат» 0, x₄, y₄, z₄, жестко связанной с корпусом керноотборника.

Задачи состоят в определении углов пространственной ориентации керноотборника и подстилающих слоев породы керна. А именно определения связи между «подвижной системой координат» керноотборника и неподвижной системой координат 0, ξ, η, ζ связанной с Землей, последнее позволяет определить ориентацию керноотборника в пространстве. Для математической постановки второй задачи, рассмотрим слой керна, проходящий через точку М следа L. Слой керна мы отождествим с плоскостью эллипса P. Далее обозначим через \vec{n} – единичный вектор нормали к плоскости слоя P, а через \overline{a} – вектор длины 1 задающий направление главной оси эллипса слоя P (рис. 3).

Рис. 2. Положение резца после отбора керна

Рис. 3. Положение слоя керна

Последняя задача состоит в определении векторов \bar{a} и \bar{n} в неподвижном репере $R_0(0, \xi, \eta, \zeta)$, связанным с Землей. Знание этих векторов задает пространственную ориентацию слоя породы керна.

Рассмотрим неподвижный репер $R_0(0, \xi, \eta, \zeta)$, связанный с Землей. При этом точку 0 расположим в устье скважины, ось 0 ξ направим по касательной к магнитному меридиану и на север, 0η – по касательной к параллели на восток, а ось 0 ζ направим по вертикали устья и вниз.

Строительство, материаловедение, машиностроение

Переход от репера R_0 к реперу R_3 может быть совершен путем поворотов на угол азимута α , зенитный угол θ и визирный ϕ . Точнее, в результате первого поворота мы получаем репер $R_1(0, x_1, y_1, z_1)$, после второго репер $R_2(0, x_2, y_2, z_2)$, а после третьего репер $R_3(0, x_3, y_3, z_3)$. При этом репер R_1 получается из R_0 поворотом последнего вокруг оси 0с на азимут α ; репер R_2 из репера R_1 поворотом его вокруг оси y_1 на зенитный угол θ , а R_3 путем поворота репера R_2 вокруг оси z_2 на угол ϕ .

Переход от системы координат $R_0(0, \xi, \eta, \zeta)$ к системе $R_1(0, x_1, y_1, z_1)$ задается матрицей:

$$A_{\alpha} = \begin{bmatrix} \cos \alpha & \sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}, \qquad \text{T.e.} \qquad \begin{bmatrix} x_1\\ y_1\\ z_1 \end{bmatrix} = A_{\alpha} \cdot \begin{bmatrix} \xi\\ \eta\\ \zeta \end{bmatrix}, \qquad (3)$$

от системы $R_1(0, x_1, y_1, z_1)$ к системе $R_2(0, x_2, y_2, z_2)$ матрицей:

$$A_{\theta} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix}, \qquad \qquad \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = A_{\theta} \cdot \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}, \qquad (4)$$

а системы координат $R_2(0, x_2, y_2, z_2)$ и $R_3(0, x_3, y_3, z_3)$ связаны матрицей:

$$\mathbf{A}_{\varphi} = \begin{bmatrix} \cos\varphi & \sin\varphi & 0\\ -\sin\varphi & \cos\varphi & 0\\ 0 & 0 & 1 \end{bmatrix}, \qquad \qquad \begin{bmatrix} \mathbf{x}_{3}\\ \mathbf{y}_{3}\\ \mathbf{z}_{3} \end{bmatrix} = \mathbf{A}_{\varphi} \cdot \begin{bmatrix} \mathbf{x}_{2}\\ \mathbf{y}_{2}\\ \mathbf{z}_{2} \end{bmatrix}. \tag{5}$$

Таким образом, согласно (3) –(5) системы координат $R_0(0, \xi, \eta, \zeta)$ и $R_3(0, x_3, y_3, z_3)$ связаны формулой

$$\begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} = A_{\varphi} A_{\theta} A_{\alpha} \cdot \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}.$$
(6)

Здесь (x3,y3,z3) – компоненты вектора \vec{b} в репере R₃, а $(0, \xi, \eta, \zeta)$ – компоненты этого вектора в репере R₀.

Теперь через A_{σ} обозначим матрицу

	$\cos \sigma$	$-\sin\sigma$	0
$A_{\sigma} =$	$\sin \sigma$	$\cos \sigma$	0
	0	0	1

Тогда из формул (1) и (6) получаем связь между «подвижной» системой координат связанной с корпусом керноотборника $R_4(0, x_4, y_4, z_4)$ и неподвижной системой координат $R_0(0, \xi, \eta, \zeta)$

$$\begin{bmatrix} x_4 \\ y_4 \\ z_4 \end{bmatrix} = A_{\sigma} A_{\phi} A_{\theta} A_{\alpha} \cdot \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}.$$
(7)

Обозначим через \vec{T}_{R_0} вектор напряженности магнитного поля Земли, а через \vec{g}_{R_0} – вектор ускорения силы тяжести в неподвижной системе координат $R_0(0, \xi, \eta, \zeta)$:

$$\vec{T}_{R_0} = \begin{bmatrix} H \\ 0 \\ Z \end{bmatrix}, \qquad \qquad \vec{g}_{R_0} = \begin{bmatrix} 0 \\ 0 \\ g \end{bmatrix}.$$

Спроектируем векторы \vec{T}_{R_0} и \vec{g}_{R_0} на оси чувствительности феррозондов и акселерометров, размещенных коллинеарно осям репера корпуса инклинометра $R_3(0, x_3, y_3, z_3)$. Тогда из формулы (6) получаем соотношения:

$$\vec{T}_{R_3} = A_{\phi} A_{\theta} A_{\alpha} \vec{T}_{R_0}, \ \vec{g}_{R_3} = A_{\phi} A_{\theta} A_{\alpha} \vec{g}_{R_0}$$
(8)

Далее перепишем соотношения (8) в скалярной форме. Для этого введем обозначения:

$${}^{1}_{H}\vec{T}_{R_{3}} = \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix}, \qquad \qquad {}^{1}_{g}\vec{g}_{R_{3}} = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix}, \qquad \qquad {}^{Z}_{H} = b.$$

Теперь, так как матрица

Строительство, материаловедение, машиностроение

 $A_{\phi}A_{\theta}A_{\alpha} = \begin{bmatrix} \cos\varphi\cos\theta\cos\alpha - \sin\varphi\sin\alpha & \cos\varphi\cos\theta\sin\alpha + \sin\varphi\cos\alpha & -\cos\varphi\sin\theta \\ -\sin\varphi\cos\theta\cos\alpha - \cos\varphi\sin\alpha & -\sin\varphi\cos\theta\sin\alpha + \cos\varphi\cos\alpha & \sin\varphi\sin\theta \\ \sin\theta\cos\alpha & \sin\theta\sin\alpha & \cos\theta \end{bmatrix}$ то формулы (8) в развернутой форме примут вид:

$$a_{1} = \cos \varphi \cos \theta \cos \alpha - \sin \varphi \sin \alpha - b \cos \varphi \sin \theta,$$

$$a_{2} = -\sin \varphi \cos \theta \cos \alpha - \cos \varphi \sin \alpha + b \sin \varphi \sin \theta,$$

$$a_{3} = \sin \theta \cos \alpha + b \cos \theta,$$

$$b_{1} = -\cos \varphi \sin \theta,$$

$$b_{2} = \sin \varphi \sin \theta,$$

$$b_{3} = \cos.$$
(9)

Отметим, что $0 \le \alpha \le 2\pi$, $0 \le \phi \le 2\pi$, $0 \le \theta \le \pi$.

Так как $0 \le \theta \le \pi$ и функция соз θ монотонная на этом интервале, то последнее уравнение системы (9) однозначно разрешимо.

Итак

$$\theta = \arccos b_3 \tag{10}$$

Предположим, что угол $\theta \neq 0, \pi$. В этом случае из четвертого и пятого уравнений (9), в силу равенства $\sin \theta = \sqrt{1 - b_3^2}$, получаем, что

$$\cos \varphi = -\frac{b_1}{\sqrt{1 - b_3^2}},$$
 $\sin \varphi = -\frac{b_2}{\sqrt{1 - b_3^2}}.$ (11)

Далее первые три уравнения системы (9) можно переписать в эквивалентной форме так:

$$\cos \alpha = a_1 \cos \theta \cos \varphi - a_2 \cos \theta \sin \varphi + a_3 \sin \theta,$$

$$-\sin \alpha = a_1 \sin \varphi + a_2 \cos \varphi,$$

$$b = (a_2 \sin \varphi - a_1 \cos \varphi) \sin \theta + a_3 \cos \theta.$$
(12)

Теперь, учитывая формулы (10) и (11), из (12) получаем

$$\cos \alpha = -a_3 \sqrt{1 - b_3^2} - \frac{a_1 b_1 b_3 + a_2 b_2 b_3}{\sqrt{1 - b_3^2}}, \quad \sin \alpha = \frac{a_2 b_1 - a_1 b_2}{\sqrt{1 - b_3^2}}.$$
 (13)

Таким образом, если зенитный угол θ лежит в интервале (0, π), то азимут, зенитный и визирный углы определяются однозначно с использованием инклинометра керноотборника с тремя акселерометрами и тремя феррозондами (10), (11) и (13).

Пусть при заполнении керноотборника проводятся измерения. Будем считать, что их количество равно n. Каждому измерению соответствуют определенные значения азимута, визирного и зенитного углов. Обозначим их через α_i , θ_i , ϕ_i , i = 1, 2, ..., n.

Далее пусть і – му измерению отвечает «высота» керна h_i , этой высоте соответствует точка M_i на следе резца L. Через P_i обозначим слой керна, проходящего через точку M_i , а через S_i – сечение керна плоскостью проходящей через центр эллипса P_i и параллельной основанию керна. И, наконец, пусть M'_i – проекция точки M_i на сечение S_i ; C_i – точка пересечения эллипса P_i и окружности сечения S_i ; A_i – вершина эллипса P_i ; B_i – проекция точки A_i на S_i ; R – радиус основания керна; $\gamma_i = \angle C_i 0M'_i$; $\beta_i = \angle A_i 0B_i$; 0 – центр круга S_i и слоя P_i (рис. 4).

Рис. 4. Система координат, связанная с пластами керна

Ясно, что не представляет никаких трудностей для определения величин углов γ_i и β_i . Так, например $tg\beta_i = \frac{|A_iB_i|}{R}$, $\sin\frac{\gamma_i}{2} = \frac{|C_iM_i'|}{2R}$. Здесь $|A_iB_i|$ и $|C_iM_i'|$ – длины отрезков A_iB_i и C_iM_i' .

Далее с использованием формул (10), (11) и (13) вычисляем значение азимута α_i , визирного и зенитного углов φ_i и θ_i , соответствующие «высоте»

керна h_i . Теперь формулы (14), (15) дают ориентации слоя $P_i \ \vec{n}_i$ и \vec{a}_i в исходном репере R_0 :

 $\vec{n}_{i_{R_0}} = \begin{bmatrix} \cos\alpha_i \cos\theta_i \sin\beta_i \sin(\varphi_i + \gamma_i - \sigma) - \sin\alpha_i \sin\beta_i \cos(\varphi_i - \sigma - \gamma_i) + \cos\alpha_i \sin\theta_i \cos\beta_i \\ \sin\alpha_i \cos\theta_i \sin\beta_i \sin(\varphi_i + \gamma_i - \sigma) + \cos\alpha_i \sin\beta_i \cos(\varphi_i - \sigma - \gamma_i) + \sin\alpha_i \sin\theta_i \cos\beta_i \\ -\sin\theta_i \sin\beta_i \sin(\varphi_i + \gamma_i - \sigma) + \cos\theta_i \cos\beta_i \end{bmatrix},$ (14)

 $\vec{a}_{i_{R_0}} = \begin{bmatrix} \cos\alpha_i \cos\theta_i \cos\beta_i \sin(\varphi_i + \gamma_i - \sigma) - \sin\alpha_i \cos\beta_i \cos(\varphi_i - \sigma - \gamma_i) - \cos\alpha_i \sin\theta_i \sin\beta_i \\ \sin\alpha_i \cos\theta_i \cos\beta_i \sin(\varphi_i + \gamma_i - \sigma) + \cos\alpha_i \cos\beta_i \cos(\varphi_i - \sigma - \gamma_i) - \sin\alpha_i \sin\theta_i \sin\beta_i \\ -\sin\theta_i \cos\beta_i \sin(\varphi_i + \gamma_i - \sigma) - \cos\theta_i \sin\beta_i \end{bmatrix}.$ (15)

Выводы. С использованием теории матриц разработаны математические модели пространственной ориентации слоев породы керна, взятого в наклонной скважине, на основе автономного забойного инклинометра с тремя ортогональными феррозондами и акселерометрами.

Предложенные математические модели позволяют с необходимой для практических задач точностью разработать рациональные алгоритмы вычисления при бурении как пространственного расположения пробуренной скважины (магнитный азимут, зенитный угол), так и угловое положение слоев керна относительно векторов напряженности магнитного поля Земли и ускорения свободного падения.

Осуществлено решение научно-технической задачи – создание системы ориентированного отбора керна в наклонных скважинах, имеющее важное значение в области повышения эффективности добычи нефти.

Использованная литература

- Блюменцев А.М. Метрологическое обеспечение геофизических исследований скважин / А.М. Блюменцев, Г.А. Калистратов, В.П. Цирульников // Законодательная и прикладная метрология. 1993. – № 3. – С. 20 – 22.
- Галета В.О. Маркшейдерско- геодезические работы при бурении на нефть и газ / В.О. Галета, Д.П. Зорин. – К.: общество Знание Укр. СССР, 1981. – 20 с.
- Кривко Н.Н. Промыслово-геофизическая аппаратура и оборудование /Кривко Н.Н., Шароварин В.Д., Широков В.Н. – М.: Недра, 1981. – 280 с.
- 4. Исаченко В.Х. Инклинометрия скважин. М.:Недра, 1987. 216с.
- Ковшов Г.Н. Инклинометры. (Основы теории и проектирования)/ Ковшов Г.Н. Алимбеков Р.И., Жибер А.В. – Уфа: Гилем, 1998. – 380 с.
- Андреев И.Б. Феррозондовые инклинометрические преобразователи с повышенными точностными и эксплуатационными характеристиками: дис.... канд. техн. наук: 05.13.05 / Андреев Игорь Борисович. – Уфа, 1987. – 206 с
- Сравнительные таблицы эксплуатационных характеристик приборов различных фирм для произведения измерений в скважинах в процессе бурения // PETROLEUM ENG. 1995. Vol. 67. №5. PP. 41 43, 47 48, 51 52, 54 59.