УДК 691:699.8

ЛЁГКИЕ БЕТОНЫ ДЛЯ КОНСТРУКЦИЙ ИНДИВИДУАЛЬНЫХ ЖИЛЫХ ДОМОВ И МАЛОЭТАЖНОГО СТРОИТЕЛЬСТВА

А. Ю. Конопляник, С. В. Бондаренко, О. Э. Севастьянова, к. т.н., Ю. А. Конопляник, А. С. Бондаренко

ГВУЗ «Приднепровская государственная академия строительства и архитектуры»

В связи с модернизацией индивидуального и малоэтажного жилищного строительства, широкое распространение получили тепловые устройства, работа которых связана с воздействием огня и высоких температур. Примером таких устройств могут служить печи, камины, плиты, отопительные системы бань и саун и др., которые являются источником очага. К тепловым устройствам относятся также трубы и дымоходы, по которым отводятся образующиеся в процессе сгорания топлива газы и пар. Температура пламени в источниках очага в зависимости от вида топлива составляет 600-1200°C, а температура отводящих газов – 300-500°C.

Для футеровки тепловых устройств на Украине в настоящее время, в основном, применяют шамотный или динасовый огнеупорный кирпич. Кирпич укладывают на огнеупорный раствор. Этот раствор используют также для заполнения зазоров между изделиями труб и дымоходов.

Учитывая высокую стоимость огнеупорных изделий и трудоемкость их укладки, экономически целесообразно изготавливать монолитную футеровку из жаростойких бетонов непосредственно на строительной площадке. Такие жаростойкие бетоны могут быть изготовлены на основе недефицитных материалов, и ориентированы на конкретного потребителя.

Анализ современного состояния разработки и исследования жаростойких бетонов и опыт их применения в металлургии [1] дают основание считать, что наиболее приемлемым для изготовления являются бетоны на жидкостекольном связующем.

Применение жаростойкого бетона взамен штучных огнеупоров позволяет механизировать процесс изготовления футеровки, создать футеровку необходимой конфигурации и значительно повысить ее стойкость. Кроме того, состав легкого жаростойкого бетона для тепловых устройств и конструкций жилых помещений может быть использован, как теплоизоляционный для наружных и внутренних ограждающих конструкций и огнезащитный, так как имеет температуру применения близкую к температуре пожара в жилых помещениях равную 1000-1100 °C при продолжительности пожара 1-2 часа [2].

Ранее для изготовления футеровки тепловых устройств жилых помещений были применены мелкоптучные изделия из тяжелых жаростойких бетонов, изготовленные в лабораторных условиях, включающие в себя крупный и мелкий шамотные заполнители, тонкомолотую добавку, жидкое стекло и отвердитель [3]. Такие составы хорошо себя зарекомендовали при изготовлении футеровки каминов, так как имеют температуру применения до 1600°C. Однако, такая высокая температура применения значительно выше макси-

мальной температуры горения различных видов топлива и температуры пожара в жилых зданиях.

Учитывая вышеизложенное, экономически и технологически целесообразно уменьшить плотность применяемых бетонов.

В качестве заполнителя в составах смесей применили шамотный заполнитель фракции 0,14-20мм. В качестве огнеупорных тонкомолотых добавок – дистенсиллиманитовый конпентрат и катализатор ИМ-2201.

Связующим служило натриевое жидкое стекло, расход которого определялся необходимой удобоукладываемостью смеси при ее укладке и уплотнении в формах.

В качестве отвердителя жидкого стекла использовали феррохромовый шлак, являющийся отходом производства ферросплавов.

В качестве пористой добавки, влияющей на плотность бетона, был выбран вспученный перлитовый песок фракции до 3мм плотностью 120кг/м3. Количество перлитового песка было выбрано в пределах 1,6-2,9% из следующих предположений. Добавка в состав смеси перлитового песка менее 1,6% незначительно влияет на уменьшение плотности бетона и улучшение его теплофизических характеристик, а добавка более 2,9% значительно ухудшает удобоукладываемость смеси, которая становится более 60сек.

Составы бетонных смесей для изготовления легкого жаростойкого бетона приведены в таблице 1.

Для получения сопоставительных характеристик исследования проводили по отношению к составам тяжелых бетонов без добавки (составы 1 и 7).

Образны жаростойких бетонов изготавливали методом вибрирования на лабораторной виброплощадке с амплитудой и частотой колебаний 1,1мм и 2860 кол/мин соответственно.

Вначале в лабораторную мешалку подавали сыпучие компоненты и смесь перемешивали в течение 2 минут, затем заливали жидкое стекло и всю смесь перемешивали в течение 3 минут. Образцы выдерживали сутки в воздушносухих условиях при нормальной температуре, распалубливали, а затем сушили при температуре $105-110^{0}$ C до постоянной массы.

Температуру деформации под нагрузкой, термическую стойкость и прочность на сжатие после нагрева и охлаждения в интервале температур 100-1000°С определяли по ГОСТ 20910-90 Бетоны жаростойкие, а кажущуюся плотность и открытую пористость - по ГОСТ 2409-95 Огнеупоры. Методы определения кажущейся плотности, открытой и общей пористости водопоглошения.

Определение коэффициента теплопроводности производили методом полого цилиндра путем измерения установившегося теплового потока.

Основные физико-механические и теплотехнические свойства легких жаростойких бетонов приведены в таблицах 2 и 3.

Кажущаяся плотность и открытая пористость как видно из таблицы 2, при введение в состав смесей перлитового песка в количестве 1,6% и выше снижает кажущуюся плотность тяжелых бетонов до 1,8 г/см³ и ниже, а сами бетоны становятся легкими. Кажущаяся плотность составов с тонкомолотой добавкой из катализатора ИМ-2201 практически не отличается от кажущейся

Строительство, материаловедение, машиностроение

плотности жаростойких бетонов с тонкомолотой добавкой из дистенсилиманитового концентрата. Повышение содержания перлита до 2,9% снижает кажущуюся плотность обох составов до 1,7 и 1,68 г/см³ соответственно. Открытая пористость при этом увеличивается до 27,2 и 25,5% соответственно.

Теплопроводность таблица 2 определяли, учитывая температурный режим работы монолитной футеровки тепловых агрегатов, когда температура по толщине слоя бетона достигает $400\text{-}600^{\circ}\text{C}$. Коэффициент теплопроводности жаростойких бетонов уменьшается с увеличением в составе бетона вспученного перлитового песка. Лучшую теплоизоляционную способность имеют жаростойкие бетоны с содержанием перлитового песка 2,9%. При этом коэффициент теплопроводности составов 6 (с катализатором ИМ-2201) и 12 (с дистенсилиманитовым концентратом) при температуре 600°C равен 0,68 и 0,6 Вт/(м $^{\circ}\text{K}$) соответственно, что в 1,62-1,77 ниже теплопроводности сравнительных составов 1 и 7 из тяжелого бетона.

Деформация под нагрузкой при высоких температурах приведена в таблице 2, где видно более высокие показатели температуры деформации под нагрузкой 0,2 МПа имеют жаростойкие бетоны с тонкомолотой добавкой из катализатора ИМ-2201. При этом температура 4 и 40% деформации в среднем на 55-70°С выше, чем у аналогичных составов бетонов с тонкомолотой добавкой из дистенсилиманитового концентрата.

Повышение в составах легких бетонов содержания перлитового песка до 2,9% уменьшает температуру 4% деформации до 1160^{0} С в бетоне с тонкомолотой добавкой из катализатора ИМ-2201 и до 1090^{0} С в бетоне с тонкомолотой добавкой из дистенсилиманитового концентрата. Однако, при этом температура остается достаточно высокой, что позволяет использовать эти бетоны для изготовления монолитной футеровки теплових агрегатов.

Термическая стойкость испытаний легких жаростойких бетонов приведенная в таблице 2 показывает, что результаты позволяют говорить о хорошем сопротивлении этих бетонов переменному нагреванию до температуры 800° С и охлаждению до 20° С. При этом образцы жаростойких бетонов после 40 воздушных теплосмен полностью сохранились.

Прочность при сжатии легких жаростойких бетонов в таблице 3 имеет характер изменения прочности всех составов бетонов приблизительно одинаковый. Прочность жаростойких бетонов уменьшается с повышением содержания вспученного перлитового песка.

При содержании перлитового песка 2,9%, прочность остаётся высокой и составляет в зависимости от вида тонкомолотой добавки 13,8-21,0 МПа, что вполне достаточно при воздействии на монолитную футеровку температур горения топлива и пожара.

Следует отметить увеличение прочности каждого из составов при повышении температуры нагрева до 1000° С и более высокие показатели прочности у жаростойких бетонов с тонкомолотой добавкой из дистенсиллиманитового концентрата.

Составы бетонных смесей

	№ составов, содержание компонентов, мас%											
Наименование компонентов	1 Сравни- тельный	2	3	4	5	держані 6	7 Сравни- тель- ный 2	8 8	9	10	11	12
Шамотный запол- нитель фракции 0,14-20мм	63,3	58,4	55,7	53,4	52,8	52,1	63,9	58,8	58,0	56,1	55,4	54,6
Катализатор ИМ-2201	20,4	22,3	22,3	22,5	22,6	22,8	-	-	-	-	-	-
Дистенсиллимани- то-вый концентрат	-	-	-	-	-	-	18,3	19,9	20,1	20,2	20,3	20,4
Жидкое стекло	14,5	15,8	17,2	19,6	19,9	20,2	16,0	17,7	18,1	19,2	19,6	20,1
Феррохромовый шлак	1,8	2,0	2,0	2,0	2,0	2,0	1,8	2,0	2,0	2,0	2,0	2,0
Вспученный перли- товый песок	-	1,6	1,8	2,5	2,7	2,9	-	1,6	1,8	2,5	2,7	2,9

Свойства легких жаростойких бетонов

№ co- cта- вов	Тонкомоло- тая добавка	Кажущая- ся плот- ность по- сле сушки, г/см ³	Открытая порис- тость,%	теплоп	ициент гровод- Зт/ м· ⁰ К	Температура деформации под нагрузкой 0,2 МПа в ⁰ С			Термическая стой- кость ($20 \leftrightarrow 800^{0}$ C), воздушные теплосме- ны		
				400°C	600°C	Н.Р	4%	40%	до появле- ния отк- рытых трещин	до раз- рушения	
1		2,0	21,5	1,03	1,1	1310	1335	1360	28	После	
2		1,8	25,6	0,78	0,9	1225	1250	1270	22	40 теп-	
3	Катализатор	1,76	25,9	0,73	0,84	1215	1240	1250	21	лосмен	
4	ИМ-2201	1,72	26,4	0,64	0,74	1180	1200	1210	20	образцы	
5		1,71	29,9	0,62	0,7	1160	1185	1200	20	coxpa-	
6		1,7	27,2	0,6	0,68	1145	1160	1180	18	нились	
7		1,98	22,0	0,98	1,06	1250	1265	1310	30	После	
8	Пъсстатурна	1,8	23,3	0,76	0,86	1160	1180	1200	26	40 теп-	
9	Дистенсил-	1,76	23,6	0,69	0,76	1155	1170	1180	25	лосмен	
10	лиманитовый	1,71	24,8	0,62	0,67	1120	1140	1150	23	образцы	
11	концентрат	1,69	25,2	0,59	0,64	1105	1130	1140	22	coxpa-	
12		1,68	25,5	0,55	0,6	1080	1090	1100	20	нились	

Таблица 3

Прочность при сжатии легких жаростойких бетонов

Nº	Тонкомолотая	Прочность при сжатии в МПа в охлажденном состоя-								
соста-	добавка	нии после нагрева до температур, °C								
BOB		100	400	600	800	1000				
1		21,5	23,0	26,7	29,2	32,0				
2	Катализатор ИМ-	15,0	16,0	16,4	17,5	20,8				
3		13,8	14,2	14,8	15,9	19,5				
4	2201	11,9	12,4	12,9	13,4	16,9				
5		11,2	11,6	12,1	12,85	15,0				
6		10,5	10,85	11,4	11,95	13,8				
7		24,0	26,0	28,0	31,0	36,0				
8	Дистенсили- манитовый кон- центрат	16,5	17,2	18,0	19,0	21,0				
9		15,6	16,6	17,2	18,4	19,9				
10		13,6	14,3	15,0	16,2	18,1				
11		12,9	13,4	14,0	14,8	16,9				
12		12,1	12,5	12,9	14,1	15,4				

Из приведенных результатов, можно сделать вывод, что разработаны составы легких жаростойких бетонов могут применятся для изготовления монолитной футеровки теплових агретатов и конструкций индивидуальных жилых домов.

Введение в состав тяжелого бетона вспученного перлитового песка в количестве 1,6-2,9% позволяет получить составы легких бетонов повышенной теплоизолирующей способности с высокими физико-механическими и термическими характеристиками. Учитывая прочностные и деформативные характеристики разработанных составов, а именно минимальную прочность при сжатии после нагрева до температуры 1000°С равную 13,8-21,0 МПа и температуру 40% деформации под нагрузкой равную 1100-1180°С, очевидно предположить сохранение их несущей способности и целостности при воздействии пожара [4]. Разработанные составы легкого бетона для тепловых устройств и конструкций жилых помещений могут быть использованы, как конструктивно – теплоизоляционные и огнезащитные для наружных и внутренних несуших и ограждающих конструкций.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Конопляник А.Ю., Бородин А.А.Опыт и перспектива применения жаростойких бетонов и огнеупорных смесей в тепловых агрегатах и конструкциях. // Теория и практика металлургии.-1999.- №1.- С.53-54.
- 2 А.Ф. Милованов. Огнестойкость железобетонных конструкций.- М.: Стройиздат, 1986. 224с.
- 3 Применение жаростойких бетонов в футеровке теплових устройств жилых помещений / А.Ю. Конопляник, А.А. Бородин, А.А. Ромащенко, Р.М. Товпашко, Е.А. Заморенная // Сб. науч. Тр: Строительство. Материаловедение. Машиностроение; вып. 16 Дн-вск: ПГАСА, 2002, с. 107 109.
- 4 ДБН В.1.1-7-2002. Зашита от пожара. Пожарная безопасность объектов строительства.- К.: Госстрой Украины, 2003. 44с.