УДК 669.01:539.4;539.2

ОЦЕНКА КАЧЕСТВА КОНСТРУКЦИОННЫХ СТАЛЕЙ ПО ИХ СПОСОБНОСТИ СОПРОТИВЛЯТЬСЯ ХРУПКОМУ РАЗРУШЕНИЮ В УСЛОВИЯХ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ

А.В. Шиян, к.ф.-м.н.

Институт металлофизики им. Г. В. Курдюмова НАН Украины

1. Ввеление

Изложенный в работе [1] феноменологический подход к трактовке состояния хрупкости металла, разработанный на основе концепции механической стабильности и понятия эффекта охрупчивания в результате воздействия различных факторов, в том числе концентраторов напряжений (КН), дал возможность установить, что в условиях концентрации напряжений три характеристики прочности: R_x — хрупкая прочность, σ_2 — прочность образца без КН при критической деформации $e_c \approx 2$ % и $\sigma_{\rm 2C}$ — прочность образца с КН при критической температуре вязко-хрупкого перехода T_c или T_0 в различных состояниях формируют три различных параметра сопротивляемости хрупкости (механической стабильности) — K_{ms} , P_{ms} и K_{msc} , каждый из которых несет свою собственную функцию в сфере защиты металла от хрупкости:

 K_{ms} – отражает общий (исходный) запас сопротивления хрупкости металла как такового:

$$K_{ms} = R_{s}/\sigma_{2},\tag{1}$$

где: $R_{\rm X}$ — хрупкая прочность металла (или для КС — сопротивление микросколу $R_{\rm MC}$ [1]) в условиях одноосного растяжения образца без КН;

 $P_{\it ms}$ – выявляет остаточный резерв сопротивления хрупкости (изломостой-кости) металла, находящегося под действием КН:

$$P_{ms} = K_{ms} / K_{msc} = \sigma_{2C} / \sigma_{2}, \tag{2}$$

 $K_{\it msc}$ — является мерой охрупчиваемости металла и представляет собой часть запаса сопротивления хрупкости, потерянного в результате присутствия в образце KH:

$$K_{msc} = R_{\rm x}/\sigma_{\rm 2C}.$$
 (3)

Исходя из этого, в работе [2] была разработана система оценки эффективности охрупчивающего действия КН на конструкционные стали (КС) с различным уровнем прочности $\sigma_{0,2}$, пластичности $\psi_{\rm K}$ и исходной механической стабильности K_{ms} в виде конкретной методологии.

Определенный интерес для инженерной практики может представлять также и методика оценки конструкционного качества КС на основе показателя P_{mss} , отражающего остаточный резерв сопротивления хрупкости металла в условиях воздействия КН.

2. Оценка конструкционного качества сталей

Разработку методики по оценке конструкционного качества КС проводили на основе базы данных механических свойств сплавов, исследованных в работе [3] и детально проанализированных в рамках концепции механической стабильности в работах [1, 2]. При этом использовали данные испытаний на одноосное растяжение образцов с кольцевым КН (радиус $r=0.25\,$ мм.; угол раскрытия $w=45\,^\circ$ — далее концентратор типа К1) и статический трехточечный изгиб образцов с усталостной трепциной (далее концентратор типа К2) и, соответственно, данные критических температур хрупкости T_c , полученные по условию общей текучести [3] и T_0 — по методике «мастер кривой» [4], а также данные испытаний гладких цилиндрических образцов при комнатной температуре испытаний (293 К) и температуре T_c . В работе использовали также характеристики и параметры, суть которых изложена в работах [1, 2].

Следует напомнить, что конструкционное качество КС в части склонности к охрупчиванию под действием КН отражено в параметре охрупчиваемости K_{msc} , что в относительной мере выражается показателем $\mu^{\sigma}_{Kmsc} = K_{msc}/K^{onm}_{msc}$ [2], при этом, чем меньше μ^{σ}_{Kmsc} , тем меньше охрупчиваемость сплава и выше его качество по охрупчиваемости.

Учитывая, что характеристика остаточной механической стабильности $P_{ms} = K_{ms}/K_{msc}$ (2), можно для оптимизированных сплавов, по аналогии с параметрами K_{ms}^{onm} и K_{msc}^{onm} [2], определить величину оптимальной (наилучшей) величины остаточной механической стабильности сплава P_{ms}^{onm} в условиях концентрации напряжений в виде соотношения:

$$P_{ms}^{onm.} = K_{ms}^{onm.} / K_{msc}^{onm.} \tag{4}$$

Таким образом, мерой конструкционного качества металла, по аналогии с мерой механического качества μ_{Kms}^{σ} по механической стабильности K_{ms} при заданной прочности $\sigma_{0,2}$ и мерой качества по охрупчиваемости μ_{Kmsc}^{σ} , т.е. по доле механической стабильности K_{msc} , потерянной в результате охрупчивания образца с КН, целесообразно назвать меру μ_{Pms}^{σ} по доле остаточной механической стабильности P_{ms} , соотнесенной к ее оптимальной (наилучшей) величине P_{ms}^{onm} , сохраненной после охрупчивания образца с КН:

$$\mu_{Pms}^{\sigma} = P_{ms}/P_{ms}^{onm.} = (K_{ms}/K_{msc}) \cdot (K_{msc}^{onm.}/K_{ms}^{onm.}) = \mu_{Kms}^{\sigma}/\mu_{Kmsc}^{\sigma}.$$
 (5)

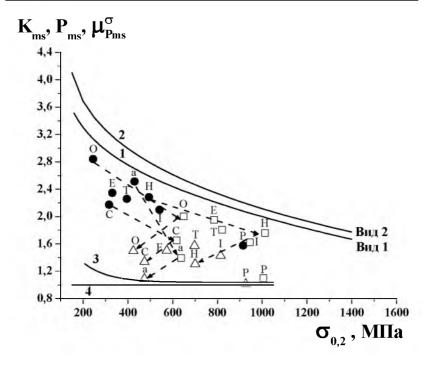
Таким образом, мера конструкционного качества КС μ_{Pms}^{σ} отражает степень превышения исходного уровня механического качества μ_{Kms}^{σ} над качеством μ_{Kmsc}^{σ} , потерянным за счет охрупчиваемости, т.е. остаточное качество металла в условиях концентрации напряжений.

Здесь важно отметить, что согласно (5) величина параметра μ_{Pms}^{σ} определяется не только начальной прочностью данного сплава $\sigma_{0,2}$ (через $K_{ms}^{onm.}$),

но и его конечной прочностью $\sigma_{0,2C}$ (через K_{msc}^{onm} с заменой параметра $\sigma_{0,2}$ на $\sigma_{0,2C}$ [2]), поэтому верхний индекс в обозначении μ_{Pms}^{σ} имеет вышеуказанный смысл, в отличии от соответствующего индекса в обозначении параметра μ_{Kms}^{σ} , где он носит смысл только заданной начальной прочности $\sigma_{0,2}$, а у параметра μ_{Kmsc}^{σ} — конечной прочности $\sigma_{0,2C}$. Таким образом, согласно (5) указанное свойство параметра μ_{Pms}^{σ} зависит от отношения конечной μ_{Kmsc}^{σ} (с КН) и исходной μ_{Kms}^{σ} (без КН) мер качества КС — чем ближе величина $\mu_{Kms}^{\sigma}/\mu_{Kmsc}^{\sigma}$ к единице, тем ближе критическая температура хрупкости T_c или T_0 к комнатной (293 К), а величина параметра $\mu_{Pms}^{\sigma} \to 1$, что означает падение уровня качества сплава.

В работе [5] было установлено, что КС можно разделить на два вида в зависимости от типа экстремума (минимум или максимум) на параболических зависимостях $\psi_{K} = f(\sigma_{0,2})$ при условии $K_{ms} = \text{const}$, которые описывают взаимосвязь свойств «пластичность – прочность – механическая стабильность» этих сплавов, а в работе [2] было введено понятие видового перехода, отражающее сохранение или изменение принадлежности сплава определенному виду в конечном состоянии (с КН при критической температуре хрупкости T_c или T_θ) по отношению к начальному состоянию (без КН при 293 К). При этом следует помнить, что переход сплава из 1-го вида во 2-ой (видовой переход 1-2) при условии $\sigma_{0,2} > \sigma_{0,2}^{\kappa p.}$ (где $\sigma_{0,2}^{\kappa p.}$ - критическая величина прочности, определяющая условие разделения сплавов на виды [2, 5]) отражает повышение степени его охрупчиваемости K_{msc} и свидетельствует о существенной потере пластических свойств ψ_K , что, естественно, ведет к снижению уровня остаточной механической стабильности $P_{\it ms}$. В итоге, это приводит к снижению меры конструкционного качества $\mu_{\scriptscriptstyle Pms}^{\sigma}$ по (5) и отражает снижение качества сплава, находящегося под действием КН. Если же видовой переход 1-2 происходит при условии $\sigma_{0,2} \leq \sigma_{0,2}^{\text{кp}}$ (характерно для КС низкой прочности), то имеет место обратная ситуация – уровень P_{ms} растет, а параметр $\mu^{\sigma}_{\mathit{Pms}}$ по (5) отражает повышенное качество КС в условиях концентрации напряжений. Подобным образом трактуется видовой переход 2-1, с тем лишь отличием, что происходит обратная ситуация: при $\sigma_{0,2} > \sigma_{0,2}^{\text{кр.}}$ (характерно для КС средней и высокой прочности) параметры $P_{\textit{ms}}$ и $\mu_{\textit{Pms}}^{\sigma}$ растут, что отражает повышение качества сплава, находящегося под действием КН, а при $\sigma_{0,2} \leq \sigma_{0,2}^{\text{кр.}}$ имеет место падение качественных показателей, что связано со снижением величин параметров P_{ms} и μ_{Pms}^{σ} . Конкретные примеры таких сложных, но, тем не менее, связанных между собой изменений свойств сплавов, находящихся в различных условиях (без КН и под действием КН), будут рассмотрены ниже.

3. Анализ изменения конструкционного качества сталей под воздействием концентраторов напряжений


На рис. 1 представлена общая схема изменения характеристик механической стабильности K_{ms} , P_{ms} и меры конструкционного качества μ_{Pms}^{σ} исследованных КС под воздействием КН – типа К1 и предельного (трещина) К2 в различных условиях НДС, а также некоторые зависимости, необходимые для анализа.

Для удобства анализа некоторые наиболее показательные сплавы, подвергаемые рассмотрению ниже, обозначены на рис. 1 буквенными символами согласно [1 – 3]. В табл. 1 приведены значения характеристик механической стабильности K_{ms} , K_{msc} и P_{ms} [1, 2], а также меры конструкционного качества μ_{Pms}^{σ} по (5).

Таблица 1. 3начения характеристик механической стабильности K_{ms} , K_{msc} и P_{ms} [1], а также меры конструкционного качества μ_{Pms}^{σ} при воздействии КН типа

К1 и К2 для показательной выборки КС

КТ и К2 олл показательной выоорки КС									
	Параметр	Обозначение КС согласно [1 – 3]							
Тип КН		«O»	«C»	«E»	«T»	«a»	«H»	«I»	«P»
		FeMn	FeMn	FeMn	CrNi	St.TR.	CrMoV	CrNi	FeMn
гладкий образец (при 293 К)	K_{ms} [1]	2,84	2,17	2,34	2,26	2,51	2,28	2,10	2,75
К1 (при <i>T</i> _c)	K_{msc} [1]	1,42	1,32	1,20	1,25	1,80	1,30	1,29	1,60
К2 (при T_{θ})		1,90	1,63	1,56	1,44	2,31	1,75	1,47	2,12
К1 (при <i>T</i> _c)	P_{ms} [1]	2,01	1,65	1,95	1,81	1,40	1,76	1,63	1,10
К2 (при T_{θ})		1,50	1,34	1,50	1,57	1,09	1,31	1,43	1,02
К1 (при <i>T</i> c)	μ_{Pms}^{σ} (5)	1,59	1,36	1,46	1,38	1,24	1,41	1,27	1,05
$K2$ (при T_{θ})		1,34	1,20	1,31	1,28	1,10	1,22	1,19	1,01

Рис. 1. Общая схема изменения характеристик механической стабильности K_{ms} , P_{ms} и меры конструкционного качества μ_{Pms}^{σ} для наиболее показательных сплавов из исследованной выборки КС [1-3]; б) наиболее показательные сплавы. Зависимости: оптимальных значений механической стабильности $K_{ms}^{onm.}$ от прочности $\sigma_{0,2}$ для сплавов 1-го (кривая 1) и 2-го (кривая 2) видов; нижней границы меры конструкционного качества μ_{Pms}^{σ} от прочности $\sigma_{0,2}$ для КН типа К1 (кривая 3) и типа К2 (кривая 4); условная граница уровня сплавов наивысшего качества (кривая 5); экспериментальные данные: $\bullet - (\sigma_{0,2}, K_{ms})$; $\Box - (\sigma_{0,2}, P_{ms})$ для КН типа К1; $\Delta - (\sigma_{0,2}, P_{ms})$ для КН типа К2; пунктирные линии со стрелками – направления изменения конструкционного качества

Результаты анализа показали, что мера конструкционного качества КС μ_{Pms}^{σ} по (5) является сложной функцией таких факторов, как видовой переход, начальная $\sigma_{0,2}$ и конечная $\sigma_{0,2C}$ прочность, начальная σ_{2} и конечная σ_{2} прочность при деформации $e_{c}\approx 2$ % и имеет различные проявления с точки зрения сопротивляемости охрупчиванию под воздействием КН:

- сплавы «О», «а» и «Н» являются одними из наилучших по показателю K_{ms} при разных уровнях начальной прочности $\sigma_{0,2}$ в условиях отсутствия КН. Последствия воздействия КН обоих типов К1 и К2 на сплавы «О» и «Н» оставляют их в ряду высококачественных, тогда как для сплава «а» эти воздействия являются пагубными и переводят его в разряд среднего уровня качества при КН типа К1 (μ_{Pms}^{σ} = 1,24), а при предельном КН типа К2 на низкий уровень качества (μ_{Pms}^{σ} = 1,10), что свидетельствует о весьма низкой сопротивляемости охрупчиванию этого сплава (показано пунктирными линиями со стрелками на рис. 1);
- сплавы «Е», «Т» и «І», имеющие достаточно высокий (но не высший) уровень K_{ms} в условиях отсутствия КН, сохраняют высокий уровень конструкционного качества $1.19 \le \mu_{Pms}^{\sigma} \le 1.46$ при воздействии обоих типов КН, что свидетельствует о высокой сопротивляемости охрупчиванию этих сплавов;
- сплав «С», имеющий сравнительно низкий уровень механической стабильности K_{ms} в условиях отсутствия КН, проявляет хорошую сопротивляемость охрупчиванию по P_{ms} под воздействием КН обоих типов и удовлетворительные качественные показатели по μ_{Pms}^{σ} (показано пунктирными линиями со стрелками на рис. 1);
- высокопрочный сплав «Р» высокого механического качества при отсутствии КН в определенной мере сохраняет свойство сопротивляемости охрупчиванию (P_{ms}) под воздействием КН типа К1, однако теряет конструкционное качество (μ_{Pms}^{σ}) под воздействием предельного КН типа К2, что, в принципе, характерно для сталей такого класса прочности.

Проведенный анализ позволил обозначить границы, которые характеризуют нижний предельный уровень конструкционного качества КС по показателю $\mu_{\scriptscriptstyle Pms}^{\sigma}$ при воздействии КН в исследованной области изменения прочно-

сти 190 МПа $\leq \sigma_{0,2} \leq$ 1050 МПа: для КН типа К1 его можно описать зависимостью (кривая 3 на рис. 1):

$$\mu_{P_{ms}}^{\sigma} = \mathbf{a} \cdot \exp(-\sigma_{0,2}/\mathbf{b}) + \mathbf{c}, \tag{6}$$

где: a = 1,860; b = 108,066; c = 1,038 — эмпирические коэффициенты, а для КН типа К2 это будет постоянный предельный уровень (кривая 4 на рис. 1):

$$\mu_{Pms}^{\sigma} = \text{const} = 1, \tag{7}$$

который обуславливает равенство T_{θ} = 293 K.

Исходя из вышесказанного, наивысшими величинами конструкционного качества μ_{Pms}^{σ} в исследованной выборке КС обладают следующие сплавы: под воздействием КН типа К1 – «О» ($\sigma_{0,2}$ = 245 МПа), «Е» ($\sigma_{0,2}$ = 331 МПа), «Т» ($\sigma_{0,2}$ = 396 МПа) и «Н» ($\sigma_{0,2}$ = 495 МПа), а сохранение наивысшего уровня качества под воздействием КН типа К2 наблюдается только у сплавов «О», «Е» и «Т».

В заключение важно заметить, что степень отличия параметра P_{ms} (с KH) от параметра K_{ms} (без KH) является не только наглядной, но и количественной мерой особого механического свойства КС – свойства охрупчиваемости от КН, равно как и степень отличия меры конструкционного качества μ_{Pms}^{σ} (с KH) от меры исходного механического качества μ_{Pms}^{σ} (без KH) является наглядным и количественным показателем изменения конструкционного качества КС в условиях концентрации напряжений.

Выволы:

1. Для оценки категории качества конструкционных сталей в различных условиях НДС предложены три количественных параметра:

 μ_{Kms}^{σ} — мера исходного механического качества по механической стабильности K_{ms} , соотнесенной с оптимальной величиной K_{ms}^{onm} , при заданной прочности $\sigma_{0.2}$;

 μ^{σ}_{Rmsc} — мера качества по охрупчиваемости, отражающая долю механической стабильности K_{msc} , потерянной в результате охрупчивания образца с

концентратором напряжений, соотнесенную с оптимальной величиной этого показателя K_{msc}^{onm} . В отличие от меры исходного механического качества μ_{Kms}^{σ} , мера качества по охрупчиваемости μ_{Rmsc}^{σ} содержит противоположный смысл – качество сплава по охрупчиваемости тем выше, чем меньше показатель μ_{Kmsc}^{σ} ;

 μ_{Pms}^{σ} — мера конструкционного качества, отражающая долю механической стабильности P_{ms} , сохраненную после охрупчивания образца с концентратором напряжений, соотнесенную с оптимальной (наилучшей) величиной этого показателя P_{ms}^{onm} .

2. Мера конструкционного качества сталей μ_{Pms}^{σ} является сложной функцией таких факторов, как видовой переход, начальная $\sigma_{0,2}$ и конечная $\sigma_{0,2}$ С прочность, начальная σ_2 и конечная σ_2 С прочность при деформации $e_c \approx 2\%$.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Мешков Ю.Я. Проблема хрупкости конструкций (обзор) // Строительство, материаловедение, машиностроение: Сб. науч. трудов. Вып. 73 Дн-вск., ПГАСА, 2014.
- Шиян А.В., Сорока Е.Ф., Носенко О.П. Методические основы определения критической температуры хрупкости сталей в условиях концентрации напряжений // Строительство, материаловедение, машиностроение: Сб. науч. трудов. Вып. 73 - Дн-вск., ПГАСА, 2014.
- 3. Smida T., Babjak J., Dlouhy I. Prediction of fracture toughness temperature dependence from tensile test parameters // Kovove Mater. 2010, 48. P. 1 8.
- 4. ASTM E 1921: Standard Test Method for Determination of Reference Temperature, T₀, for Ferritic Steels in the Transition Range. 2005.
- 5. Шиян А. В., Котречко С. А., Менков Ю. Я., Сорока Е.Ф., Носенко О.П., Федорова И.С. Взаимосвязь свойств прочности, пластичности и механической стабильности конструкционных сталей // МТОМ. − 2013, № 4. − С. 12 − 30.