УДК 669.018

СТРУКТУРА И СВОЙСТВА ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ СИСТЕМЫ Al_xCoCrFe_xNiV

В.Ф. Башев, д.ф.-м.н., проф., А.И. Кушнерев, к.ф.-м.н., доц.

Днепропетровский национальный университет им. Олеся Гончара

Основой большинства применяемых в настоящее время сплавов является один, реже два или три металла с последующим добавлением к ним незначительных концентраций легирующих примесей. Однако вследствие возрастающих потребностей промышленности в различных конструкционных и функциональных металлических материалах непрерывно создаются новые технологии и на их основе разрабатываются перспективные легированные стали и сплавы. Постепенно увеличивается как число легирующих элементов, так и их доля в общей массе материалов.

Относительно недавно появились первые работы по созданию и комплексному исследованию нового класса материалов, так называемых высокоэнтропийных полиметаллических сплавов, включающих от 5 до 13 основных элементов, в эквиатомных или близких к эквиатомным концентрациях (от 5 до 35%) [1]. Подбором количества компонентов и соотношения их концентраций в сплаве создается повышенное значение энтропии смешения, которое сохраняется не только в расплавленном состоянии, но и после затвердевания. Вследствие высокой энтропии в структуре многокомпонентных сплавов при кристаллизации обычно образуются простые твердые растворы замещения с ОЦК или ГЦК решетками. За последние несколько лет был получен и изучен целый ряд многокомпонентных сплавов. Подобные сплавы характеризуются уникальной структурой и целым комплексом замечательных эксплуатационных характеристик, таких как твердость, износостойкость, устойчивость к окислению и коррозии, ионизирующим излучениям, высокая термическая стабильность [2-6].

Настоящая работа представляет результаты изучения микроструктуры, фазового состава и механических свойств высокоэнтропийных многокомпонентных сплавов системы Al_xCoCrFe_xNiV (x=1;2) в литом состоянии (скорость охлаждения ~10² K·c⁻¹).

Микроструктура литых образцов исследовалась при помоши оптического металлографического микроскопа Neophot-21. Рентгеноструктурный анализ (РСА) проводился на дифрактометре ДРОН-2.0 в монохроматизированном медном излучении. Микротвердость измерялась на микротвердомере ПМТ-3 при нагрузке 200г.

Подбор компонентов исследованных высокоэнтропийных сплавов осуществляли, исходя из следующих соображений.

В соответствии с уравнением Гиббса имеем

$$\Delta G_{mix} = \Delta H_{mix} - T \Delta S_{mix} . \tag{1}$$

Здесь ΔG_{mix} - потенциал Гиббса, ΔH_{mix} - энтальпия смещения, ΔS_{mix} - энтропия смещения, которая определяется из уравнения

$$\Delta S_{mix} = -R \sum_{i=1}^{n} c_i \ln c_i , \qquad (2)$$

*с*_{*i*} - атомная доля элемента с номером *i*, *R*- универсальная газовая постоянная.

Повышенное значение энтропии в соответствии с уравнением Гиббса приводит к снижению свободной энергии сплава, что обусловливает устойчивость твердого раствора. Для сплава из *n* компонентов максимальное значение энтропии, очевидно, будет при их смешивании в равных атомных долях. В высокоэнтропийных сплавах ΔS_{mix} обычно составляет 12-19 Дж/(моль·К). Однако, для того, чтобы в структуре сплава отсутствовали сложные интерметаллические соединения и аморфные фазы, необходимо также выполнение дополнительных условий. В соответствии с [7,8], фазовый состав высокоэнтропийного сплава можно предсказать, используя параметр Ω

$$\Omega = \frac{T_m \Delta S_{mix}}{\left| \Delta H_{mix} \right|},\tag{3}$$

где T_m - средняя температура плавления сплава из *n* компонентов

$$T_m = \sum_{i=1}^n c_i (T_m)_i ,$$
 (4)

$$\Delta H_{mix} = \sum_{i=1,i\neq j}^{n} \Omega_{ij} c_i c_j , \qquad (5)$$

где $\Omega_{ij} = 4\Delta H_{mix}^{AB}$. ΔH_{mix}^{AB} - энтальпия смещения для бинарного сплава элементов А и В в жилком состоянии.

Компоненты сплава также не должны сильно отличаться друг от друга по атомным радиусам, что можно охарактеризовать параметром

$$\delta = 100 \sqrt{\sum_{i=1}^{n} c_i \left(1 - \frac{r_i}{r_i}\right)^2} , \qquad (6)$$

$$\overline{r} = \sum_{i=1}^{n} c_i r_i , \qquad (7)$$

*г*_{*i*} - атомный радиус элемента с номером *i*.

Согласно [8], в структуре высокоэнтропийных сплавов, для которых $\Omega \ge 1,1$ и $\delta \le 6,6$ вместо сложных интерметаллических соединений и аморфных фаз образуются твердые растворы замещения (простые и упорядоченные). При этом, полного отсутствия упорядочения следует ожидать при значениях энтальнии смещения -5 кДж/моль < $\Delta H_{max} < 5$ кДж/моль и $\delta \le 4,6$.

Тип кристаллической решетки образующихся твердых растворов связан с расчетной концентрацией валентных электронов в сплаве (*VEC*) [9,10], определяемой по формуле

$$VEC = \sum_{i=1}^{n} c_i (VEC)_i , \qquad (8)$$

Строительство, материаловедение, машиностроение

где $(VEC)_i$ - концентрация валентных электронов (с учетом *d*-электронов) для элемента с номером *i*. Согласно [9,10], при VEC > 8 в сплаве наблюдается формирование твердого раствора с решеткой типа ГЦК, при VEC < 6,87 – типа ОЦК, и при 6,87 < VEC < 8 следует ожидать формирования двухфазных твердых растворов на основе ОЦК и ГЦК решеток.

Значения величин, необходимых для вычисления параметров, приведенных выше, а также результаты вычислений приведены соответственно в табл.1, табл.2 и табл.3.

Таблица 1

	Al	Co	Cr	Fe	Ni	V
Атомный радиус, нм.	0,143	0,125	0,129	0,126	0,125	0,135
VEC	3	9	6	8	10	5
Шихтовая концентрация в сплаве AlCoCrFeNiV, ат.%	16,67	16,67	16,67	16,67	16,67	16,67
Шихтовая концентрация в сплаве AlCoCrFe ₂ NiV, ат.%	14,28	14,28	14,28	28,57	14,28	14,28
Шихтовая концентрация в сплаве Al ₂ CoCrFeNiV, ат.%	28,57	14,28	14,28	14,28	14,28	14,28
Шихтовая концентрация в сплаве Al ₂ CoCrFe ₂ NiV, ат.%	25	12,5	12,5	25	12,5	12,5

Атомные радиусы элементов, концентрации валентных электронов [11] и иихтовые концентрации элементов в сплавах системы Al_xCoCrFe_xNiV

Таблица 2

Dux Y Y Y					1 3
Элемент	Co	Cr	Fe	Ni	V
Al	-19	-10	-11	-22	-16
Со		-4	-1	0	-14
Cr			-1	-7	-2
Fe				-2	-7
Ni					-18

АН^{AB}_{mix} (кДж/моль), вычисленные с использованием модели Miedema [12]

Таблица 3

Значения ΔH_{mix} , ΔS_{mix}	,δ,	VEC и Ω для сплавов системы	Al _x CoCrF	⁷ e _x NiV
--	-----	--------------------------------------	-----------------------	---------------------------------

Сплав	∆Н _{тіх} ,кДж/моль	∆S _{тіх} ,Дж/(моль∙К)	δ	VEC	Ω
AlCoCrFeNiV	-14,89	14,89	5,04	6,83	1,76
AlCoCrFe ₂ NiV	-12,72	14,52	4,84	6,99	2,02
Al ₂ CoCrFeNiV	-17,29	14,52	5,67	6,28	1,38
Al ₂ CoCrFe ₂ NiV	-15,31	14,4	5,56	6,5	1,57

По дифрактограммам (рис.1) устанавливался фазовый состав, оценивались периоды кристаллических решеток и параметры тонкой структуры (области когерентного рассеяния (ОКР) и микронапряжения). Плотность дислокаций (р) определяли по профилю первого дифракционного максимума (табл.4). Анализ дифрактограмм позволил установить, что в структуре изученных сплавов системы Al_xCoCrFe_yNiV присутствуют неупорядоченные твердые растворы с решеткой типа ОЦК и упорядоченные твердые растворы, относящиеся к структурному типу B2 (тип CsCl), что и следовало ожидать, принимая во внимание значения параметров, приведенных в табл.3. Исключение составляет лишь сплав AlCoCrFe₂NiV, для которого можно было предполагать существование двухфазной структуры ОЦК+ГЦК. Однако, как отмечается в [13,14], при значении параметра VEC вблизи граничного, возможны отклонения от прогнозируемого типа структуры. Оцененные параметры решетки показывают, что формирование твердого раствора проходит на базе высокотемпературного элемента, которым в данном сплаве является хром (а= 0,2884 нм). Высокую твердость можно объяснить наличием в кристаллической решетке твердого раствора замещения разнородных атомов элементов с разными размерами, электронным строением и термодинамическими свойствами. Все это приводит к существенному искажению (Да/а) кристаллической решетки, и, как следствие, к ее значительному упрочнению.

Рис.1. Дифрактограммы образцов высокоэнтропийных сплавов системы $Al_xCoCrFe_xNiV: \Diamond - B2; \blacklozenge - OLK.$

Строительство, материаловедение, машиностроение

По результатам исследования литых образцов высокоэнтропийных сплавов системы $Al_xCoCrFe_xNiV$ можно сделать вывод о наличии в них ярко выраженной дендритной структуры (рис.2) различных конфигураций и объемов междендритного пространства.

Таблица 4

Фазовый состав, размеры ОКР (L), степень искажения решетки ($\Delta a/a$), микротвердость (H_u) и плотность дислокаций (ρ) изученных сплавов.

Сплав	Фазовый состав	L,	∆a/a	H_{μ} , МПа	ρ, cm ⁻²
		нм.			
AlCoCrFeNiV	ОЦК + B2 (<i>а</i> =0,2889 нм)	19±2	$3,2 \cdot 10^{-3}$	6900±300	$1,55 \cdot 10^{12}$
AlCoCrFe ₂ NiV	ОЦК + B2 (<i>а</i> =0,2883 нм)	30±2	$2,5 \cdot 10^{-3}$	4700 ± 200	6,3+10 ¹¹
Al ₂ CoCrFeNiV	ОЦК + B2 (<i>а</i> =0,2889 нм)	35±2	1,6·10 ⁻³	6400 ± 300	4,6·10 ¹¹
Al ₂ CoCrFe ₂ NiV	ОЦК + B2 (<i>а</i> =0,2887 нм)	36±2	$1,5 \cdot 10^{-3}$	4500±200	$4,52 \cdot 10^{12}$

Рис. 2. Микроструктура образцов высокоэнтропийных сплавов системы $Al_xCoCrFe_xNiV$: a – AlCoCrFeNiV; б – AlCoCrFe₂NiV; в – Al₂CoCrFeNiV; г – Al₂CoCrFe₂NiV.

Выводы

Подтверждена ведущая роль высокотемпературного элемента в формировании типа твердого раствора в изученных высокоэнтропийных сплавах.
Установлено подохитальное влидине микронапрахений и платности дисто-

2. Установлено положительное влияние микронапряжений и плотности дислокаций на уровень механических характеристик многокомпонентных сплавов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Yeh J.W. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes/ J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang // Advanced Engineering Materials. –2004. –V.6. –P.299-303.
- Wu J.M. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content/ J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang // Wear.-2006. -V.261. -P.513-519.
- Yeh J.W. Alloy Design Strategies and Future Trends in High-Entropy Alloys/J.W. Yeh // JOM. – 2013. – V. 65. – P. 1759–1771.
- Egami T. Irradiation Resistance of Multicomponent Alloys/ T. Egami, W. Guo, P.D. Rack, T. Nagase // Metallurgical and Materials Transactions A.– 2014, – V. 45, –P. 180–183.
- Tsai. M.H. Physical Properties of High Entropy Alloys/M.H. Tsai// Entropy. 2013, –15, P. 5338 – 5345.
- Соболь О.В. О воспроизводимости однофазного структурного состояния многоэлементной высокоэнтропийной системы Ti-V-Zr-Nb-Hf и высокотвердых нитридов на ее основе при их формировании вакуумно-дуговым методом/О.В. Соболь, А.А. Андреев, В.Ф. Горбань, Н.А. Крапивка, В.А. Столбовой, И.В. Сердюк, В.Е. Фильчиков//Письма в ЖТФ.-2012.-т.38, вып. 13. -с.41-48.
- Zhang Y. Solid-Solution Phase Formation Rules for Multi-component Alloys/ Y. Zhang, Y.J. Zhou, J.P.Lin, G.L. Chen, P.C. Liaw//Advanced Engineering Materials.–2008. –V.10, Iss. 6. –P. 534–538.
- 8. **Zhang Y.** Alloy Design and Properties Optimization of High-Entropy Alloys/ Y. Zhang, X.Yang, P.K. Liaw//JOM.–2012. –V.64, Iss. 7. –P. 830–838.
- Guo.S. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase/S. Guo, C.T.Liu// Progress in Natural Science: Materials International.–2011.–V. 21, Iss. 6, –P. 433–446.
- Guo.S. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys /S. Guo, C. Ng, J.Lu, C.T.Liu// Journal of Applied Physics.-2011.-V. 109, Iss. 10, -P. 103505-1-103505-5.
- Li W.K. Advanced Structural Inorganic Chemistry/W.K. Li, G.D. Zhou, T.C.W. Mak. –New York: Oxford University Press, 2008. –688 p.
- 12. Takeuchi A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element/A. Takeuchi, A. Inoue// Materials Transactions.-2005. -V. 46, № 12. -P. 2817-2829.
- Sriharitha R. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5) high entropy alloys/ R. Sriharitha, B. S. Murty, R. S. Kottada// Intermetallics. –2013. –V.32. –P. 119-126.
- Singh A.K. On the formation of disordered solid solutions in multi-component alloys/ A.K. Singh, A. Subramaniam// Journal of Alloys and Compounds. – 2014. –V.587. –P. 113-119.