Проценко М.Ю., к.т.н. Куберский С.В., к.т.н. Эссельбах С.Б. (ДонГТУ, г. Алчевск, Украина).

ТЕОРЕТИЧЕСКАЯ И ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА БАЛАНСА КОМПОНЕНТОВ ПРИ ОБРАБОТКЕ МЕТАЛЛА МЕТОДОМ ДУГОВОГО ГЛУБИННОГО ВОССТАНОВЛЕНИЯ

В роботі виконано аналіз матеріального балансу процесу обробки розплаву методом дугового глибинного відновлення марганцю і кремнію з шлаку виробництва силікомарганцю і отримана хороша збіжність розрахункових і експериментальних даних.

Ключові слова: дугове глибинне відновлення, рудна суміш, баланс обробки, шлак силікомарганцю, ступінь відновлення.

В работе выполнен анализ материального баланса процесса обработки расплава методом дугового глубинного восстановления марганца и кремния из шлака производства силикомарганца и получена хорошая сходимость расчетных и экспериментальных данных.

Ключевые слова: дуговое глубинное восстановление, рудная смесь, баланс обработки, шлак силикомарганца, степень восстановления.

В последние годы отмечается значительный спрос на средне- и высоколегированные стали повышенного качества, что является предпосылкой к увеличению потребностей в ферросплавах и лигатурах, а также их стоимости.

Значительное влияние на себестоимость ферросплавов оказывают потери базовых элементов при традиционных схемах переработки рудного сырья и последующей обработке металлических расплавов. При раскислении и легировании стали марганцем с использованием ферромарганца сквозное извлечение его из оксидной марганецсодержащей руды не превышает 50 % от общего количества легирующего элемента, содержащегося в руде. Основная часть потерь, согласно данным работы [1] имеет место при выплавке марганецсодержащего сплава. Часть марганца возвращается в ферросплавное производство при использовании шлаков в качестве шихты или применения шлака непосредственно в сталеплавильном производстве для прямого легирования и частичной

замены ферросплавов. Но даже с учетом этих факторов потери марганца снижаются незначительно и составляют по данным работы [2] 57-67 %.

При производстве силикомарганца сквозные потери марганца и кремния составляют ~45-50 % и ~70-80 % соответственно. Переработка силикомарганцевого шлака по схемам, отмеченным выше невозможна ввиду присутствия марганца и кремния в нем в виде силикатов. Анализ калькуляции себестоимости производства марганцевых сплавов показывает, что расходы на шихтовые материалы составляют 27-48 % всех затрат, поэтому особое внимание необходимо уделить рациональному использованию шихты и снижению потерь базовых элементов со шлаком, а также в результате испарения [3].

Одной из наиболее актуальных проблем современной металлургии является поиск альтернативных традиционным шихтовых материалов и разработка новых технологических приемов, позволяющих эффективно использовать их при производстве железоуглеродистых сплавов. Технология дугового глубинного извлечения полезных элементов из вторичных материалов и отходов непосредственно в металлический расплав появилась в металлургии довольно недавно и, в настоящее время, является актуальным направлением научных исследований [4, 5]. Конкурентоспособность предложенного способа рафинирования и раскисления-легирования расплавов, в первую очередь, обусловлена снижением расходов на шихтовые материалы и энергоресурсы, а также увеличением сквозного извлечения примесей из материалов, содержащих их оксиды.

Для повышения эффективности технологии обработки расплавов методом ДГВ важным является разработка и описание механизма восстановления примесей и их распределения между контактирующими фазами.

Поэтому основной целью данной работы был комплексный анализ баланса элементов металла и компонентов шлака при переработке различных материалов методом ДГВ для легирования чугуна и стали полезными элементами.

В настоящих исследованиях при реализации процесса ДГВ марганца и кремния из металлургических отходов в жидкий расплав было проведено 5 опытных плавок. На опытных плавках использовался наиболее распространенный, доступный и дешевый карботермический метод восстановления элементов с применением в качестве восстановителя боя графитовых электродов. В качестве основного сырья в рудновосстановительной смеси блоков использовали шлак и шлам сухой газоочистки от производства силикомарганца, а также передельный шлак. Рудно-восстановительный блок включает в себя комбинированный электрод, вокруг которого набивается рудно-восстановительная смесь в

специальной форме. Комбинированные электроды представляют собой стальную трубку диаметром 18×2,5 мм внутри набитую электродной смесью, состоящей из 87,5 % молотого графита и 12,5 % балластной добавки в виде магнезита.

Для повышения основности рудно-восстановительной смеси до 1,1-1,44 в нее добавляли негашеную известь и доломит. Кроме того, доломит использовали при изготовлении блока № 1 для обеспечения содержания MgO в составе рудно-восстановительной смеси на уровне 10 %. Технология изготовления дуговых блоков подробно описана в работе [4]. Химический состав шихтовых материалов для изготовления рудно-восстановительных блоков и шлака представлен в таблице 1, а состав рудно-восстановительной смеси до и после коксования в таблице 2.

Экспериментальные рудно-восстановительные блоки № 2-5 имели диаметр 50 мм, а блок № 1-60 мм. Обработку металлического расплава проводили в индукционной печи ИСТ-0,6. В качестве шихты использовали стальной и чугунный лом, который предварительно взвешивали на электронных весах с погрешностью ± 5 г. Пробы металла и шлака взвешивали на электронных весах с погрешностью ± 1 г.

После расплавления шихты и нагрева чугуна до температуры ~1500 0 С, а стали до ~1650 0 С, с поверхности расплава удаляли часть шлака, производили отбор пробы металла и замеряли температуру с помощью платина-платинородиевой термопары погружения, спай, которой был помещен в защитный кварцевый колпачок. При погружении термопары в жидкий расплава контролировали величину возникшей ЭДС на милливольтметре типа M2020 класс точности 0,2 и по градуированной таблице определяли температуру расплава. Для отбора пробы металла использовали специально изготовленную пробницу, в которую металл заливали ложкой. В пробнице формировалась проба диаметром 30 мм и высотой ~15 мм, которую потом отправляли в лабораторию на анализ. Химический анализ проб производился на спектрометре серии ARL 9900, относительное стандартное отклонение которого составляет 0,01 – 0,001. Масса отобранных проб составляла 115-245 г.

Сила тока при обработке расплава блоками № 2-5 составляла 250 A, а для блока №1 350 A, которая фиксировалась амперметром, установленным на щитке прибора ТИР-630.

Для дугового глубинного легирования металла марганцем и кремнием в него погружали графитовый электрод и с помощью специального кронштейна, где уже был закреплен опытный рудновосстановительный блок, производили обработку. Блоки \mathbb{N}_2 1 и 2 использовали для обработки чугун, а \mathbb{N}_2 3-5 стали.

Таблица 1 – Химический состав шихтовых материалов и конечных продуктов обработки

Моторуют	№ блока			Соде	ржание і	сомпоне	нтов, %		
Материал	Nº OJIOKa	CaO	SiO ₂	Al_2O_3	MgO	MnO	P_2O_5	S	Прочие
	1	12,3	43,5	10,3	4,7	27,8	-	-	1,4
Шлак МнС	2	15,7	48,0	13,1	4,8	15,2	0,1	1,9	1,2
	5	15,5	49,3	12,6	4,7	14,5	-	0,72	2,68
Шлам МнС	3	2,50	34,8	1,8	-	54,8	0,06	-	6,04
Передельный шлак	4	14,4	35,9	7,8	3,9	33,1	0,03	0,59	4,28
	1	23,0	35,3	14,2	4,3	11,7	0,031	0,650	10,819
Шлак перед обработкой	2	36,3	40,2	9,5	8,4	5,2	0,114	0,133	0,152
	3	18,5	30,4	13,8	26,2	3,5	0,017	0,820	6,763
	1	16,7	39,1	9,6	5,5	13,1	0,026	0,530	15,444
	2	46,5	27,8	12,8	4,9	3,5	0,017	0,820	3,663
Шлак после обработки	3	21,2	32,3	8,9	23,6	7,0	0,100	0,100	6,800
	4	22,0	31,2	12,8	24,8	3,6	-	0,30	5,30
	5	22,3	25,9	15,5	26,3	2,0	-	1,3	6,7
Доломит	1	53,0	3,3	1,7	36,4	-	-	-	5,6
Известь	2-5	95,0	1,0	-	1,0	1	-	1	3,0
Зола кокса ¹⁾	3-5	5,0	48,7	25,0	1,0		0,300		20,0
Магнезит	1-5	4,7	3,5	-	87,9				3,9
Жидкое стекло	1	0,2	36,7	0,3	-	-	-	0,15	$62,65^{2}$
Футеровка кварцитовая	1	-	96,0	-	-	-	-	-	4,0
Футеровка хромомагнезитовая	2-5	2,0	8,0	4,0	45,0	-	-	-	$41,0^{2}$

 $^{^{1)}}$ – в коксе содержится ~10 % золы; $^{2)}$ – в том числе жидкое стекло содержит 8,8 % Na₂O и влагу, а в футеровка 30,0 % Cr_2O_3 .

Таблица 2 – Состав опытных рудно-восстановительных блоков

№ блока	Состав	Соде	ржится, %	Macca		
J1º OJIOKa	шихты	до коксования	после коксования*	расплава, кг		
	шлак МнС	51,8	54,0			
1	доломит	19,2	20,0	29,400		
	графит	21,0	22,0	29,400		
	жидкое стекло	4,0	4,0			
	шлак МнС	51,8	54,6			
2	известь	22,2	23,4	30,180		
2	графит	12,0	13,0	30,180		
	К.П.	15,0	9,0			
	шлам МнС	52,5	55,3			
3	известь	22,5	23,7	30,000		
3	кокс	10,0	11,0	30,000		
	К.П.	15,0	10,0			
	передел. шлак	54,8	58,5			
4	известь	19,2	20,5	29,940		
4	кокс	11,0	12,0	29,940		
	к.п.	15,0	9,0			
	шлак МнС	51,8	55,3			
5	известь	22,2	23,7	29,755		
3	кокс	11,0	12,0	29,733		
	К.П.	15,0	9,0			

^{* -} количество углерода каменноугольного пека (к.п.) после коксования составит 60 %.

Длительность обработки составляла 8-10 минут и определялась энергетическими параметрами процесса. По окончании обработки производили замер температуры и отбирали пробу металла и шлака. Остатки рудно-восстановительного блока взвешивали и замеряли.

Блок № 1 сжигали при обработке чугуна в ИСТ-0,6 с кислой кварцитовой футеровкой, а при сжигании остальных блоков печь имела основную хромомагнезитовую футеровку.

Экспериментальные данные, полученные после проведения обработки металлического расплава методом ДГВ, представлены в таблицах 3 и 4. В таблице 4 масса извлеченных элементов приведена за вычетом их количества, поступающего в металл из трубки комбинированного электрода.

Материальный баланс процесса оценивали по количеству компонентов и элементов, перешедших в шлак, пыль газ и металл из рудно-

восстановительных блоков, шлака находящегося на поверхности расплава перед обработкой и футеровки тигля печи.

T \sim \sim \sim \sim \sim	U			<i>ــ</i> ــ
$120\pi M M = 3M$	мический состав	метаппа	поспе	000000000000000000000000000000000000
таолица 5 жи	IMM ICCRMM COCIAD	MC 1 asisia	1100110	oopaoorkii

№	До	обработки	i, %	После обработки, %				
110	Mn	Si	С	Mn	Si	C		
1	1,10	1,06	4,13	1,15	1,07	4,38		
2	0,58	1,49	3,37	0,66	1,58	3,49		
3	0,10	0,01	0,12	0,22	0,01	0,26		
4	0,22	0,01	0,26	0,27	0,05	0,52		
5	0,27	0,05	0,52	0,32	0,08	1,02		

Таблица 4 – Опытные данные после обработки

		Pa	сход материалов, г		Перешло элементов в металл, г			
№		Ком	бинированный				С	
712	Рудная		электрод	Графитовый	Mn	Si		
	смесь	Трубка	Электродная смесь	электрод				
		(ст. 3сп)	F 177					
1	811,0	166,45	25,0	52,0	14,067	2,823	73,914	
2	438,0	172,0	40,0	16,0	23,540	27,177	36,289	
3	259,0	51,812	3,0	32,0	37,642	-	41,171	
4	139,0	54,097	13,0	74,0	14,163	10,754	79,176	
5	389,0	151,757	24,0	138,0	14,002	10,346	149,833	

Блоки № 3-5 сжигались поочередно. Поэтому для них конечный шлак после сжигания блока № 3 в расчетах принимается как шлака перед обработкой плавки блоком № 4. Аналогичное условие принималось при обработке металла блоком № 5.

В качестве примера рассмотрим баланс обработки металла блоком \mathbb{N}_2 2. По результатам химического анализа определим количество SiO_2 и MnO, принявших участие в карботермическом восстановлении допуская, что кремний и марганец восстанавливается только из шлака силикомарганца, а кремнезем вносимый в рудную часть известью не восстанавливается, так как он связан в прочные соединения

$$M_{SiO_2} = \frac{M_{Si} \cdot 60}{28} = \frac{27,177 \cdot 60}{28} = 58,236 \ \varepsilon;$$

 $M_{MnO} = \frac{M_{Mn} \cdot 71}{55} = \frac{23,540 \cdot 71}{55} = 30,388 \ \varepsilon,$

где: M_{Si}, M_{Mn} — масса извлеченных элементов, соответственно Si и Мn, г.

Масса прореагировавших компонентов рудно-восстановительной смеси составит: шлак силикомарганца — 239,148 г; известь — 102,492 г; графит — 56,940 г; углерод каменноугольного пека — 39,420 г. В результате восстановления изменилось количество SiO_2 и MnO в шлаке силикомарганца, которое представлено в таблице 5.

Таблица 5 — Расчетное количество компонентов и масса шлака силикомарганца после восстановления

Материал		Количество компонентов, г										
	CaO	SiO ₂	Al_2O_3	MgO	MnO	P_2O_5	S	Пр.	Σ			
Шлак МнС	37,546	114,791	31,328	11,480	36,350	0,239	4,544	2,870	239,148			
Восстановлено	-	58,236	-	-	30,388	-	-		88,624			
Получено	37,546	56,555	31,328	11,480	5,962	0,239	4,544	2,870	150,524			

Для расчета компонентов, поступающих из шлака перед обработкой плавки и футеровки, необходимо задаться расходными величинами этих материалов. Принимаем, что количество шлака на поверхности расплава перед обработкой составляет 250 г, а количество футеровки перешедшей в шлак в процессе сжигания дуговых блоков 80 г. Кроме того учитываем поступление магнезита из электродной смеси. Суммарное поступление компонентов из всех источников представлено в таблице 6.

Таблица 6 – Количество компонентов и масса материалов, формирующих конечный шлак

Материал	Количество компонентов, г										
	CaO	SiO_2	Al_2O_3	MgO	MnO	P_2O_5	S	Пр.	Σ		
Шлак перед плавкой	90,750	100,500	23,750	21,000	13,000	0,286	0,334	0,380	250,000		
Футеровка	1,600	6,400	3,200	36,000	-	-	-	32,800	80,000		
Известь	97,367	1,025	-	1,025	-	-	-	3,075	102,492		
Электродная смесь	0,235	0,175	-	4,395	-	-	-	0,195	5,000		
Конечный шлак*	227,498	164,655	58,278	73,900	18,962	0,525	4,878	39,321	588,017		
	38,7	28,0	9,9	12,6	3,2	0,089	0,830	6,681	100,000		

^{* —} в числителе Γ , в знаменателе %.

Суммарное содержание углерода в шихте (блок -56,940 г, к.п. -39,420 г, электродная смесь -40,000 г, графитовый электрод -29,000 г) составит 160,360 г. Масса углерода, который перешел в расплав из рудного блока составит 36,289-29,000=7,289 г.

Количество углерода, затраченного на реакции восстановления марганца и кремния составит

$$M_C = \frac{M_{Si} \cdot 2 \cdot 12}{28} + \frac{M_{Mn} \cdot 12}{55} = \frac{27,177 \cdot 2 \cdot 12}{28} + \frac{23,540 \cdot 12}{55} = 28,431 \text{ s}.$$

Количество углерода, который не принимал участия в восстановлении и не усвоился металлической ванной удаляясь из реакционной зоны в виде отходящих газов и пыли, составит 160,36-6,289-28,431=95,640 г.

Таким образом, лишь около 40 % углерода, вносимого шихтой, полезно расходуется в процессе ДГВ и в ходе дальнейших исследований необходимо проанализировать возможность снижения расхода углеродсодержащих материалов.

Материальный баланс плавки для данного эксперимента представлен в таблице 7.

Таблица 7 – Материальный баланс обработки расплава блоком № 2

Поступило	Γ	Получено	Γ
Металлического расплава	30180,000	Металла	30352,000
Рудной смеси в т.ч.:	438,000	Металла проб	124,000
шлака МнС	239,148	Шлака	588,017
извести	102,492	Газов и пыли	124,071
графита	56,940		
Каменноугольного пека	39,420		
Графитового электрода	29,000		
Комбинированного электрода в т.ч.:	212,000		
металла трубки	172,000		
электродной смеси	40,000		
Шлака перед обработкой	250,000		
Футеровка	80,000		
Всего	31189,000		31188,088

Невязка статей баланса для блока № 2 составит

$$H\% = \frac{M_{\delta} - M_{M}}{M_{M}} \cdot 100\% = \frac{31189,000 - 31188,088}{31188,088} \cdot 100\% = 0,003\%.$$

Сравнение расчетного химического состава шлака и его состава, полученного при анализе проб рентгенофлуоресцентным методом представлены в таблице 8.

Из данных таблицы 8 видно, что расчетный химический состав шлака достаточно близок к результатам лабораторного анализа. Некоторое отклонение величин можно объяснить как погрешностью в химическом анализе, так и неточностями в определении массы расхода футеровки, конечного шлака и шлака перед обработкой, которые являются гетерогенными. Меньшее количество MgO полученное в результате химического анализа, может свидетельствовать о возможности его частичного восстановления из шлака и удаления магния в газовую фазу. Результаты аналогичных экспериментов и расчетов, выполненных для случая обработки расплава блоками №1, 3-5 представлены в таблице 9.

Таблица 8 – Химический состав шлака, полученного расчетным путем и на спектрометре серии ARL 9900

Материал	Содержание компонентов, %									
	CaO	SiO ₂	Al_2O_3	MgO	MnO	P_2O_5	S	Пр.	Σ	
Расчетный шлак	38,7	28,0	9,9	12,6	3,2	0,089	0,830	6,681	100,000	
Лаб. анализ шлака	46,5	27,8	12,8	4,9	3,5	0,017	0,820	3,663	100,000	
Разница	7,8	0,2	2,9	7,7	0,3	0,072	0,010	3,018	-	

Таблица 9 — Химический состав шлака, полученного расчетным и опытным путем для блоков № 1, 3-5

Моторион			Содер	жание	компо	оненто	в, %		
Материал	CaO	SiO ₂	Al_2O_3	MgO	MnO	P_2O_5	S	Пр.	Σ
Блок № 1									
Расчетный шлак	21,00	40,40	8,90	9,90	14,10	0,008	0,183	5,509	100
Лаб. анализ шлака	16,70	39,10	9,60	5,50	13,10	0,026	0,530	15,444	100
Разница	4,3	1,30	0,70	4,40	1,00	0,018	0,347	9,935	-
Блок № 3									
Расчетный шлак	21,70	28,40	9,10	20,10	7,50	-	0,400	12,800	100
Лаб. анализ шлака	21,20	32,30	8,90	23,60	7,00	0,100	0,100	6,800	100
Разница	0,50	3,90	0,20	3,50	0,50	0,100	0,300	6,000	-
Блок № 4									
Расчетный шлак	23,50	23,50	8,00	24,70	4,70	0,100	0,400	15,100	100
Лаб. анализ шлака	22,00	31,20	12,80	24,80	3,60	ı	0,300	5,300	100
Разница	1,50	7,70	4,80	0,10	1,10	0,100	0,100	9,800	-
Блок № 5									
Расчетный шлак	29,60	28,20	10,40	18,60	3,70	ı	0,400	9,100	100
Лаб. анализ шлака	22,30	25,90	15,50	26,30	2,00	-	1,300	6,700	100
Разница	7,30	2,30	5,10	7,70	1,70	-	0,900	2,400	-

Данные в таблице 9 еще раз подтверждают близкую сходимость экспериментальных и расчетных данных.

На основании данных таблиц 8 и 9 можно отметить, что сквозное извлечение марганца из рудного материала (силикомарганцевого шлака) при использовании процесса ДГВ составляет 70-85 % и практически в два раза выше сквозного извлечения марганца из марганцевой руды при получении ферросплавов и дальнейшем легировании ими стали. В случае использования в качестве шихты более богатых марганцем материалов (марганцевая руда, передельный шлак, марганцевый агломерат и т.п.) эффективность процесса может быть еще выше.

В дополнение к результатам, приведенным авторами настоящей статьи в работе [5] необходимо при определении эффективности процесса учитывать шлак, который остается после обработки. Количество такого шлака будет больше количества используемого в качестве основного рудного материала шлака силикомарганца, а химический состав близок к составу шлаков, которые можно использовать для производства строительных материалов и на подсыпку дорог. Поэтому затраты на шихтовые материалы и соответственно себестоимость обработки будут еще ниже.

В результате проведенной работы выполнен анализ материального баланса процесса обработки расплава методом дугового глубинного восстановления марганца и кремния. В ходе анализа получена хорошая сходимость расчетных и экспериментальных данных, что подтверждает правильность принятых в работе ограничений и допущений (расход футеровки и количество шлака перед обработкой). Полученные данные могут быть исходными для описания механизма процесса восстановления полезных примесей методом ДГВ и усовершенствования технологии для промышленной его реализации.

Дальнейшие работы будут направлены на уточнение механизма дугового глубинного восстановления элементов, исследование энергетического баланса обработки и определение рационального количества углеродсодержащего сырья, используемого в качестве восстановителя.

Библиографический список

- 1. Толстогузов Н.В. Потери марганца при плавке марганцевых сплавов и пути их сокращения. -M., 1980. -37 с.
- 2. Наконечный А.Я. Эффективность прямого легирования стали марганцем / А.Я. Наконечный, В.И. Романенко, А.Ю. Зайцев // Сталь $Nolemath{0}1. 1994. C.$ 17 20.
- 3. Проектирование и оборудование электросталеплавильных це-хов: Учебник / В.А. Гладких, М.И. Гасик, А.Н. Овчарук, Ю.С. Пройдак. Днепропетровск: Системные технологии, 2004. 736 с.

- 4. Проценко М.Ю. Оценка эффективности использования электродугового легирования железоуглеродистых расплавов марганецсодержащими отходами / М.Ю. Проценко, С.В. Куберский, С.Б. Эссельбах // Сбор. науч. трудов. Вып. №30. Алчевск: ДонГТУ, 2010. С. 202—214.
- 5. Проценко М.Ю. Сравнительный анализ эффективности легирования металла методом дугового глубинного восстановления и ферросплавами / М.Ю. Проценко, С.В. Куберский, С.Б. Эссельбах, С.В. Семирягин, В.С. Эссельбах // Сб. научн. трудов конф. «Инновационные технологи внепечной металлургии чугуна и стали», 26 октября 2011; под ред. проф., д.т.н. Дюдкина Д.А., проф., д.т.н. Смирнова А.Н. Донецк: ДонНТУ, 2011. С. 143-151.

Рекомендована к печати д.т.н., проф. Петрушовым С.Н.