ПРИНЯТИЕ РЕШЕНИЯ О МНОЖЕСТВЕ СТРАТЕГИЙ ПРИМЕНЕНИЯ ПРОТИВНИКОМ СВОИХ РАЗНОТИПНЫХ СРЕДСТВ ПОРАЖЕНИЯ В УСЛОВИЯХ НЕСТОХАСТИЧЕСКОЙ НЕОПРЕДЕЛЕННОСТИ

к.т.н. А.А. Адаменко

Представлен метод формирования множества стратегий применения разнотипных средств поражения в операции при нечетком описании количества средств поражения каждого типа.

Постановка проблемы. Принятие решения о предпочтительных стратегиях применения стороной А средств поражения при противодействии группировке войск стороны В возможно на основе анализа предполагаемых результатов применения сторонами своих различных стратегий применения разнотипных средств поражения, т.е. при рассмотрении операции в смысле [1]. Формирование множества стратегий применения сторонами своих разнотипных средств поражения (например, ракетных комплексов) требует наличия у оперирующей стороны (стороны А) информации о количестве средств поражения каждого типа у каждой из сторон в операции. Принятие решения оперирующей стороной о количестве разнотипных средств поражения противника в операции возможно лишь в условиях нестохастической неопределенности, обусловленной отсутствием или недостаточностью необходимой статистики, неустановившимися процессами производства и развития ВВТ, непредсказуемостью действий противника, а также действием иных неопределенных факторов, которые имеют нестохастическую природу (например, возможность ведения боевых действий с применением рассматриваемых типов средств поражения стороной В с другими противниками). Таким образом, принятие решения оперирующей стороной о множестве стратегий применения стороной В своих разнотипных средств поражения в операции возможно лишь в условиях нестохастической неопределенности.

Анализ литературы. В [2] предложен методический подход оценивания количества разнотипных средств поражения противника в операции в условиях нестохастической неопределенности путем их описания дискретными нечеткими числами [3]. Данный подход позволяет получить оценки предполагаемого количества разнотипных средств поражения противника в операции с учетом меры уверенности экспертов в правдоподобности данных оценок. Однако данный источник и иные известные авторам источники не содержат методического подхода, позво-

ляющего формировать множество стратегий применения разнотипных средств поражения в операции, количество которых описано нечетко.

Цель статьи. Целью статьи является разработка метода формирования множества стратегий применения в операции разнотипных средств поражения, количество которых описано нечетко.

Раздел основного материала. При разработке метода формирования множества S стратегий применения стороной B своих разнотипных средств поражения в операции будем исходить из ряда посылок.

- 1. Сторона В располагает средствами поражения n типов, количество которых задается величиной N_{ℓ} , $\ell=\overline{1,n}$.
- 2. Сторона В может использовать свои средства поражения при m-кратном их применении (т.е. m количество залповых ударов стороны В по множеству объектов стороны A, следующих друг за другом в дискретные моменты времени).
- 3. Внутри отдельного удара сторона В может применить один из множества предпочтительных вариантов распределения своих разнотипных средств поражения по множеству объектов стороны А.

Исходя из вышеуказанных посылок, множество S стратегий применения стороной B своих средств поражения в операции будет иметь вид:

$$S = S_{(M\Pi)} \quad \bigcup \quad S_g, \ g = \overline{1,m} \ , \tag{1}$$

где $S_{(M\Pi)} = S_{(M\Pi)}(N_\ell)$, $\ell = \overline{1,n}$ — множество стратегий распределения N_ℓ средств поражения типа l стороны B между ее m ударами; $S_g = S_g(N_{\ell,g})$, $\ell = \overline{1,n}$, $g = \overline{1,m}$ — множество стратегий распределения множества $N_{\ell,g}$ средств поражения ℓ -го типа стороны B, выделенных согласно одной из множества $S_{(M\Pi)}(N_\ell)$ стратегий для проведении g-го удара, по множеству объектов поражения стороны A.

Формирование оперирующей стороной множества стратегий $S_{(M\Pi)}$, распределения стороной В своих средств поражения средств поражения между m ударами требует наличия информации у стороны A о количестве N_ℓ , $\ell=\overline{1,n}$, средств поражения стороны В каждого типа. Как отмечено в постановке проблемы, оперирующая сторона (сторона A) вынуждена принимать решение о количестве средств поражения противника каждого типа в условиях нестохастической неопределенности. В данных условиях вполне оправдано применение методического подхода, который представлен в [2]. Данный

подход предусматривает описание количества средств поражения ℓ -го типа, $\ell=\overline{1,n}$, стороны B дискретным нечетким числом (ДНЧ) \widetilde{N}_{ℓ} :

$$\widetilde{N}_{\ell} = \bigcup_{i=1}^{k_{\ell}} (\mu_{\widetilde{N}_{\ell}}(u_{\ell,i}), u_{\ell,i});$$

где $u_{\ell,i}$ — элемент универсального дискретного множества U положительных чисел (далее — множество U), $\ell=\overline{l,n}$, $i=\overline{l,k_\ell}$; $\mu_{\widetilde{N}_\ell}(u_{\ell,i})$ — значение функции принадлежности элемента $u_{\ell,i}$, $i=\overline{l,k_\ell}$, к нечеткому числу \widetilde{N}_ℓ ; k_ℓ — количество элементов $u_{\ell,i}$ множества, значения функции принадлежности $\mu_{\widetilde{N}_\ell}(u_{\ell,i})$ которых к нечеткому числу \widetilde{N}_ℓ отлично от нуля.

Нечеткое описание количества средств поражения каждого типа затрудняет формирование множества стратегий распределения стороной В своих средств поражения вида 1. В интересах формирования множества стратегий применения разнотипных средств поражения, количество которых описано нечетко, предлагается следующее.

Найдем общее количество \widetilde{N} средств поражения стороны B, которое можно получить на основании проведения операции суммирования над ДНЧ \widetilde{N}_{ℓ} , $\ell=\overline{1,n}$, и которое согласно [3] будет представлять собой нечеткое множество вида

$$\widetilde{N} = \sum_{\ell=1}^{n} \widetilde{N}_{\ell} = \bigcup_{i=1}^{q} (\mu_{\widetilde{N}}(x_i), x_i),$$

где x_i — элемент множества $U\,U\,;\; \mu_{\widetilde{N}}(x_i^-)$ — значение функции принадлежности элемента $x_i^-,\; i=\overline{1,q}^-,\; \kappa$ нечеткому числу $\widetilde{N}\,;\; q$ — количество элементов $x_i^-,\;$ значения функции принадлежности $\mu_{\widetilde{N}}(x_i^-)$ которых κ нечеткому числу \widetilde{N} отлично от нуля; причем $q \leq \prod_{\ell=1}^n k_\ell^-$.

Суммирование нечетких чисел проводим в 3 этапа.

1. Находим носитель [3] нечеткого числа \widetilde{N} , т.е., элементы x_i ,

 $i=\overline{1,q}\;,\;q=\prod_{\ell=1}^n k_\ell\;,$ каждый из которых формируется следующим образом:

2. Формируются множества M_i , $i=\overline{1,q}$, $q=\prod_{\ell=1}^n k_\ell$, элементами которых являются комбинация элементов $u_{\ell,j}$, $\ell=\overline{1,n}$, $j=\overline{1,k_\ell}$, в результате суммирования которых на предыдущем этапе был получен элемент x_i , т.е.:

3. Для каждого элемента x_i , $i=\overline{1,q}$, $q=\prod_{\ell=1}^n k_\ell$, определяется значение

 $\mu_{\widetilde{N}}(x_i)$ функции принадлежности этого элемента к нечеткому числу \widetilde{N} :

$$\mu_{\widetilde{N}}(x_i^-) = \min_{\ell = \overline{l,n}, \ u_{\ell,i} \in M_i} (\mu_{\widetilde{N}_\ell}(u_{\ell,j})) \,.$$

Так как одно и тоже число x_i , $i=\overline{1,q}$, $q=\prod_{\ell=1}^n k_\ell$, может быть получено путем суммирования различных комбинаций чисел $u_{\ell,i}$, $\ell=\overline{1,n}$, $i=\overline{1,k_\ell}$, то возможны случаи, когда $x_s=x_v$, при условии $s\neq v$, $s,v=\overline{1,q}$. Поэтому, при формировании нечеткого множества \widetilde{N} в случае наличия двух и более одинаковых элементов x_i оставляем один элемент, а именно тот, который имеет наибольшее значение функции принадлежности $\mu_{\widetilde{N}}(x_i)$ к нечеткому множе-

ству \widetilde{N} . В этом случае количество q элементов x_i , $i=\overline{1,q}$, нечеткого множества \widetilde{N} будет определяться отношением вида $q \le \prod_{\ell=1}^n k_\ell$.

Основываясь на вышеизложенном, предлагается множество стратегий распределения стороной B своих средств поражения по объектам стороны A сформировать в виде нечеткого множества \widetilde{S} , вида

$$\widetilde{S} = \widetilde{S}_{(M\Pi)} \bigcup S_g$$

где $\widetilde{S}_{(M\Pi)} = \widetilde{S}_{(M\Pi)}(\widetilde{N}_{\ell}) = \{\mu_{\widetilde{N}}(x_i), S_{i(M\Pi)}(u_{\ell,i})\}, i = \overline{l,q}, \ell = \overline{l,n}, u_{\ell,i} \in M_i$ (M_i — множество вида 2) — нечеткое множество стратегий распределения $u_{\ell,i}$ средств поражения ℓ -го типа стороны B между ее m ударами; $S_g = S_g(u_{\ell,i,g}), \ell = \overline{l,n}, i = \overline{l,q}, g = \overline{l,m},$ — множество стратегий распределения множества $u_{\ell,i,g}$ средств поражения ℓ -го типа стороны B, выделенных согласно одной из множества $S_{i(M\Pi)}(u_{\ell,i})$ стратегий для проведении g-го удара, по множеству объектов поражения стороны A.

Выводы. В данной статье предложен метод формирования нечеткого множества стратегий применения разнотипных средств поражения в операции при нечетком описании количества средств поражения каждого типа. В дальнейшем целесообразным является проведение исследований в интересах выбора математической модели противодействия двух сторон в условиях нечеткого описания исходных данных о сторонах.

ЛИТЕРАТУРА

- 1. Надежность и эффективность в технике: Справочник в 10 т. / Ред. совет: В.С. Авдуевский и др. М.: Машиностроение, 1988. Т. 3. Эффективность технических систем / Под общ. ред. В.Ф. Уткина, Ю.В. Крючкова. 328 с.
- 2. Більчук В.М., Адаменко А.А., Брежнєв Є.В. Прийняття рішення щодо кількості засобів ураження противника в операції в умовах нестохастичної невизначеності // Системи обробки інформації. Х.: НАНУ, ПАНМ, ХВУ, 2002. Вип. 6(22). С. 233 235.
- 3. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений.— М.: Мир, 1976. — 165 с.

Поступила 5.11.2003

АДАМЕНКО Анатолий Анатольевич, канд. техн. наук, старший помощник нач. отдела XBV. В 1996 году окончил XBV. Область научных интересов – системный анализ эффективности функционирования сложных систем и операций.