СИНТЕЗ СТРУКТУРЫ ПСЕВДОМЕДИАННОГО ФИЛЬТРА

А.В. Шостак (Харьковский университет Воздушных Сил)

Приводится методика синтеза структуры взвешенного псевдомедианного фильтра для обработки изображений.

синтез, медианная фильтрация, взвешенный псевдомедианный фильтр

Введение. Медианная фильтрация является широко используемым методом нелинейной цифровой фильтрации для обработки изображений. Основными достоинствами медианной фильтрации является [1]: сохранение при фильтрации перепадов яркости изображения; наилучшее подавление шумов, имеющих распределение с "тяжелыми хвостами" (например, биэкспоненциального), и импульсных шумов. Эти достоинства в основном и определяют область использования медианной фильтрации.

Однако медианная фильтрация обладает следующими недостатками: худшее, чем фильтрация с помощью скользящего среднего, подавление аддитивных шумов с равномерным и нормальным распределениями; при больших размерах апертуры фильтра искажаются мелкие детали изображения; повышенным требованием к быстродействию фильтра при работе в режиме реального времени. Несмотря на простоту некоторых алгоритмов оценки медианы [2] и постоянное повышение мощности вычислительных средств, медианная фильтрация продолжает требовать значительных вычислительных ресурсов, что объясняется реальным режимом работы при обработке изображения, увеличением разрешения и глубины цвета изображения, увеличением апертуры фильтра и использованием взвешенной медианной фильтрации. Поэтому поиск более эффективных алгоритмов оценки медианы является актуальной задачей.

В данной статье рассматривается методика синтеза взвешенного псевдомедианного фильтра на основе структуры данных типа дерево.

Основная часть. Пусть в апертуре фильтра имеется последовательность из n чисел (n нечетно) $A = (a_1, ..., a_n)$. Для хранения последовательности чисел A и оценки медианы будем использовать m-арное корневое дерево, в котором каждая вершина (кроме листьев) имеет m потомков [3]. Пример m-арного корневого дерева (m = 3) при апертуре n = 5 для псевдомедианной фильтрации значения в точке a_3 представлен на рис. 1. Тогда алго-

ритм оценки медианы a^* имеет вид $a^* = \text{med}(a_3, a_2, \text{med}(a_1, a_4, a_5))$. Над марным корневым деревом будут выполняться следующие операции:

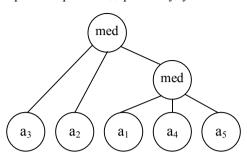


Рис. 1. 3-арное дерево для псевдомедианной фильтрации (n = 5)

- модификация содержимого листьев;
- поиск медианы из m
 элементов во внутренних узлах и в корне дерева.

При, например, m = 3 осуществляется псевдомедианная фильтрация в виде поиска медиан из 3-х элементов во внутренних узлах и корне [4]. Очевидно, что при m = n осуществляется медианная фильтрация с

использованием точного алгоритма поиска медианы последовательности А. Псевдомедианная фильтрация при различных m_1 и m_2 (m_1 <n, m_2 <n) отличается быстродействием и точностью оценки медианы последовательности А.

Пусть h_i – глубина і-го листа в дереве, h_m = $max(h_1, \dots, h_n)$ – максимальная глубина листьев в дереве. Вес і-го листа в дереве определим как

$$W_i = 1 + \Delta h_i, \tag{1}$$

где $\Delta h_i = h_m - h_i, \ i = 1, 2, \ldots$, п. Упорядочим (например по убыванию) веса листьев в дереве, то есть пусть $W_1 \geq W_2 \geq \ldots \geq W_n$. Тогда $\overline{W} = (W_1, W_2, \ldots, W_n)$ — упорядоченный вектор весов листьев дерева. Пусть также для выполнения взвешенной медианной фильтрации известен вектор весов в апертуре фильтра \overline{V}' . Упорядочим элементы вектора \overline{V}' также как и элементы вектора \overline{W} , то есть $V_1 \geq V_2 \geq \ldots \geq V_n$. Пусть существует $K_1 \leq V_2 \leq \ldots \leq V_n$. Пусть существует $K_2 \leq \ldots \leq V_n$.

Задача синтеза взвешенного псевдомедианного фильтра апертуры п состоит в определении структуры m-арного корневого дерева, вектор весов листьев которого \overline{W} наиболее близок к заданному вектору весов фильтра \overline{V} . Выберем для вектора весов фильтра \overline{V} такое m-арное корневое дерево, которое среди всех k деревьев имеет минимальную ошибку E.

Пусть, например, ошибка Е является среднеквадратической:

$$E = \sum_{i=1}^{n} (W_i(k) - V_i)^2.$$
 (2)

Пример. Пусть апертура фильтра n=7, вектора весов взвешенного медианного фильтра $\overline{V}=(1,\,2,\,3,\,5,\,3,\,2,\,1)$. Упорядоченный по убыванию вектор весов имеет вид $\overline{V}=(5,\,3,\,3,\,2,\,2,\,1,\,1)$. Выберем наилучшее

3-арное корневое дерево для взвешенного псевдомедианного фильтра сре-

ди вариантов деревьев, представленных на рис. 2.

В соответствии с рис. 2 и формулой (1) векторы весов деревьев таковы: $\overline{W}(1) = (2, 1, 1)$

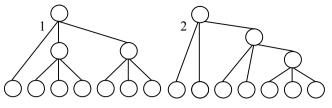


Рис. 2. Два варианта 3-арных деревьев с n = 7 листьями

1, 1, 1, 1, 1), $\overline{W}(2)$ = (3, 3, 2, 2, 1, 1, 1). Рассчитанные по формуле (2) ошибки для этих деревьев таковы:

$$E(1) = \sum_{i=1}^{7} (W_i(1) - V_i)^2 = 19; \ E(2) = \sum_{i=1}^{7} (W_i(2) - V_i)^2 = 6.$$

Таким образом, так как min(E(1), E(2)) = E(2), то для заданного вектора весов \overline{V} при m=3 из двух вариантов (рис. 2) наилучшим является второй. Следовательно, алгоритм псевдомедианной взвешенной фильтрации будет иметь вид $a^* = med(\mathring{a}, \mathring{a}, med(\mathring{a}, \mathring{b}, med(\mathring{a})))$.

Выводы. Таким образом, приведена методика синтеза структуры древовидного взвешенного псевдомедианного фильтра для обработки изображений. Исходными данными при синтезе фильтра являются размер апертуры фильтра \overline{V} и арность дерева \overline{V} и арность дерева \overline{V}

ЛИТЕРАТУРА

- 1. Быстрые алгоритмы в цифровой обработке изображений / Под ред. Т.С. Хуанга. – М.: Радио и связь, 1984. – 224 с.
- 2. Шостак А.В., Дорошенко Ю.И. Выбор алгоритма поиска медианы при небольшой размерности задачи // Вісник НТУ "ХПІ". X.: НТУ "ХПІ". 2003. Вип. 21. С. 183 186.
- 3. Касьянов В.Н., Евстигнеев В.А. Графы в программировании: обработка, визуализация и применение. С.-Пб.: БХВ-Петербург, 2003. 1104 с.
- 4. Шостак А.В., Ивашко А.В., Дорошенко Ю.И. Приближенный метод нахождения медианы цифровой последовательности // 12-я межд. НПК Місго-Cad-2004, 20 21 мая 2004 г. Х.: НТУ "ХПИ", 2004. С. 43 46.

Поступила 21.02.2005

Рецензент: доктор физико-математических наук, профессор С.В. Смеляков, Харьковский университет Воздушных Сил.