СТАТИСТИЧНІ ХАРАКТЕРИСТИКИ ОСНОВНИХ ПАРАМЕТРІВ ДІАГРАМИ СПРЯМОВАНОСТІ ЦИЛІНДРИЧНОЇ АНТЕННОЇ РЕШІТКИ ПРИ МАЛИХ ЗНАЧЕННЯХ ФАЗОВИХ ПОМИЛОК

В.І. Замятін, В.М. Чепіга, Г.А. Лєвагін, А.Ф. Шевченко (Харківський університет Повітряних Сил ім. І. Кожедуба)

Розглянуто середню діаграму спрямованості по потужності та дисперсію уведення напрямку головного максимуму циліндричної антенної решітки при наявності фазових помилок в її елементах. Показано, що основні результати якісно збігаються зі статистичними характеристиками, отриманими для лінійної та кільцевої антенних решіток – зменшується величина діаграми спрямованості по потужності в напрямку головного максимуму, відбувається запливання нулів діаграми спрямованості, так само якісно веде себе дисперсія уведення напрямку головного максимуму в залежності від радіусу кореляції помилок.

циліндрична антенна решітка, статистичні характеристики, діаграма спрямованості по потужності, дисперсія уведення напрямку головного максимуму

Постановка проблеми. В останній час в зв'язку з розвитком техніки збільшився інтерес до розробки вісесиметричних двохкоординатних по кутам антенних решіток [1]. До їх класу належить й циліндрична антенна решітка. Одним з важливих питань при розгляді циліндричної антенної решітки є характеристики точності визначення кутових координат при наявності різного роду помилок в елементах антени. Як відомо зі статистичної теорії антен (СТА), характеристики спрямованості будь-яких антен обмежені всілякого роду неточностями і нестабільностями в амплітудно-фазовому розподілі (АФР). Точнісні характеристики антен також визначаються фазовими помилками. Особливо важливе питання точного визначення координат і, відповідно, впливу фазових помилок на характеристики антен у фазованих антенних решітках (ФАР), насамперед, в активних. Величини фазових помилок фактично визначають дискретність фазообертачів або елементів приймально-передавальних модулів.

Проведемо розгляд впливу фазових помилок в елементах на статистичні характеристики циліндричної антенної решітки (АРЦ).

Аналіз літератури. Найбільш глибокою та об'ємною в області СТА є праця [2]. В ній проведено дослідження статистичних характеристик лінійної синфазної системи безперервно розподілених джерел з розповсюджен-

ням теорії на лінійну решітку, антену з прямокутною апертурою та антену хвилі, що біжить. Але статистичні характеристики опуклих антен в ній досліджено не було. Найбільш повний огляд сучасного стану СТА наведений в [3], проте характеристики опуклих антен в ній розглянуті не були. Деякі статистичні характеристики кільцевих антенних решіток (коефіцієнт спрямованої дії, середня діаграма спрямованості по потужності та дисперсія уведення напрямку головного максимуму) були розглянуті в [4].

В АРЦ присутні елементи конфігурації і кільцевої, і лінійних решіток (в одній площині кільце, в іншій – лінійка). Зрозуміло, що ефекти, які виникають з появою фазових помилок у циліндричній решітці, будуть схожі на ефекти в кільцевий і лінійній.

Тому метою даної статті є розгляд впливу малих фазових помилок у АРЦ на її деякі статистичні характеристики – середню діаграму спрямованості по потужності (СДСП), дисперсію уведення напрямку голов-

Рис. 1. Циліндрична антенна решітка

ного максимуму (УНГМ).

Постановка задачі. Розглянемо циліндричну антенну решітку, що складається з Q_0 кілець з S_0 елементами в кожному (рис. 1). Для формування діаграми спрямованості (ДС) використовується сектор решітки, що складається з S_{01} елементів по кільцю циліндра і всіх елементів по його утворюючій.

ДС системи дискретно розподілених в деякому об'ємі V ізотропних джерел з АФР $A(\vec{r}_{s,q})$ ($A(\vec{r}_{w,y})$), та фазовими помилками в АФР $\alpha \rho(\vec{r}_{s,q})$ (що нормовані до свого середньок-

вадратичного значення σ_{ϕ}) при НГМ $\vec{k}_0 = 0$ може бути записана в вигляді

$$\dot{f}\left(\vec{\tilde{k}}_{0}\right) = \sum_{s} \sum_{q} A(\vec{r}_{s,q}) \exp\left(i\sigma_{\phi}\phi(\vec{r}_{s,q}) + i\vec{\tilde{k}}_{0}\vec{r}_{s,q}\right), \tag{1}$$

де $\vec{r}_{s,q} = \{r_{s,q|x}, r_{s,q|y}, r_{s,q|z}\}, \vec{r}_{w,y} = \{r_{w,y|x}, r_{w,y|y}, r_{w,y|z}\} - радіус-вектори точок на випромінюючому об'ємі V в координатах, що нормовані до розміру V:$

$$r_{s,q x} = \frac{2x}{X}; \quad r_{s,q y} = \frac{2y}{Y}; \quad r_{s,q z} = \frac{2z}{Z},$$

де X, Y, Z – характерні розміри об'єму V в напрямку відповідних вісей прямокутної системи координат Охуг, що пов'язана з об'ємом;

$$\widetilde{\vec{k}}_0 = \left\{ \frac{\pi X}{\lambda} \sin \widetilde{\theta}_0 \cos \widetilde{\varphi}_0, \quad \frac{\pi Y}{\lambda} \sin \widetilde{\theta}_0 \sin \widetilde{\varphi}_0, \quad \frac{\pi Z}{\lambda} \cos \widetilde{\varphi}_0 \right\} = \left\{ \widetilde{k}_{0x}, \quad \widetilde{k}_{0y}, \quad \widetilde{k}_{0z} \right\} -$$

узагальнений кут.

Відповідно, діаграма спрямованості по потужності (ДСП) має вигляд

$$\left|\dot{f}\left(\tilde{\vec{k}}_{0}\right)\right|^{2} = \sum_{s} \sum_{q} \sum_{w} \sum_{y} A(\vec{r}_{s,q}) A^{*}(\vec{r}_{w,y}) \exp\left(i\sigma_{\phi}(\phi(\vec{r}_{s,q}) - \phi(\vec{r}_{w,y})) + i\tilde{\vec{k}}_{0}(\vec{r}_{s,q} - \vec{r}_{w,y})\right).$$
(2)

Розглянемо статистичні характеристики при впливі випадкової фазової помилки в кожному приймальному елементі. Як зазначалося вище, будемо вважати, що в процесі виготовлення та експлуатації АРЦ вдалося запобігти великим фазовим помилкам, тобто – всі помилки, що розглянуті, є *малими*. Тому, всі дисперсії помилок відповідають співвідношенню $\sigma_{\phi}^2 \ll 1$, і можна записати

$$\exp\left(\mathbf{i}\cdot\boldsymbol{\sigma}_{\phi}\cdot\left(\phi\left(\vec{r}_{s,q}\right)-\phi\left(\vec{r}_{w,y}\right)\right)\right)\approx1+\mathbf{i}\cdot\boldsymbol{\sigma}_{\phi}\cdot\left(\phi\left(\vec{r}_{s,q}\right)-\phi\left(\vec{r}_{w,y}\right)\right)-\frac{1}{2}\cdot\boldsymbol{\sigma}_{\phi}^{2}\cdot\left(\phi\left(\vec{r}_{s,q}\right)-\phi\left(\vec{r}_{w,y}\right)\right)^{2}.$$
(3)

Формули (1) – (3) будемо розглядати в подальшому в якості вихідних.

Середня діаграма спрямованості по потужності при впливі випадкової фазової помилки в кожному приймальному елементі циліндричної антенної решітки. Для знаходження середньої діаграми спрямованості по потужності розглянемо вираз для ДСП (2). Середня ДСП має вигляд

$$\left| \vec{f} \left(\vec{\tilde{k}}_0 \right) \right|^2 = \sum_{s} \sum_{q} \sum_{w} \sum_{y} A(\vec{r}_{s,q}) \cdot A^*(\vec{r}_{w,y}) \exp\left(i \cdot \sigma_\phi \left(\phi(\vec{r}_{s,q}) - \phi(\vec{r}_{w,y}) \right) \right) \exp\left(i \cdot \vec{\tilde{k}}_0(\vec{r}_{s,q} - \vec{r}_{w,y}) \right).$$
(4)

Будемо вважати, що середнє значення помилок $\overline{\phi(\vec{r}_{s,q})} = 0$, тому що воно може бути включено в $A(\vec{r}_{s,q})$, коефіцієнт кореляції $\overline{\phi(\vec{r}_{s,q})} \cdot \overline{\phi(\vec{r}_{w,y})} = K_{s,q;w,y}$, при цьому коефіцієнт кореляції є нормованим, $K_{s,q;w,y} = 1$ при s = w, q = y. Фазовий множник різниці фаз помилок (3) з урахуванням їх малості при усереднені прийме вигляд

$$\exp\left(\mathbf{i}\cdot\boldsymbol{\sigma}_{\phi}\cdot\left(\overline{\phi}(\overline{\mathbf{r}}_{s,q})-\phi(\overline{\mathbf{r}}_{w,y})\right)\right)\approx1+\mathbf{i}\cdot\boldsymbol{\sigma}_{\phi}\cdot\left(\overline{\phi}(\overline{\mathbf{r}}_{s,q})-\phi(\overline{\mathbf{r}}_{w,y})\right)-(1/2\cdot\boldsymbol{\sigma}_{\phi}^{2}\cdot\left(\overline{\phi}(\overline{\mathbf{r}}_{s,q})-\phi(\overline{\mathbf{r}}_{w,y})\right)^{2}=\left(1-\boldsymbol{\sigma}_{\phi}^{2}\right)+\boldsymbol{\sigma}_{\phi}^{2}\cdot\mathbf{K}_{s,q;w,y}.$$
(5)

СДСП (4) прийме вигляд

$$\left|\dot{f}\left(\tilde{\vec{k}}_{0}\right)\right|^{2} = \left|\dot{f}_{0}\left(\tilde{\vec{k}}_{0}\right)\right|^{2} \left(1 - \sigma_{\phi}^{2}\right) + \sigma_{\phi}^{2} \cdot I\left(\tilde{\vec{k}}_{0}\right).$$
(6)

57

де діаграма спрямованості по потужності (без фазових помилок)

$$\left|\dot{f}_{0}\left(\vec{\tilde{k}}_{0}\right)\right|^{2} = \sum_{s} \sum_{q} \sum_{w} \sum_{y} A(\vec{r}_{s,q}) A^{*}(\vec{r}_{w,y}) \exp\left(i \cdot \vec{\tilde{k}}_{0} \cdot \left(\vec{r}_{s,q} - \vec{r}_{w,y}\right)\right),$$

та діаграма розсіяння (ДР)

$$I\left(\vec{\tilde{k}}_{0}\right) = \sum_{s} \sum_{q} \sum_{w} \sum_{y} K_{s,q;w,y} A\left(\vec{r}_{s,q}\right) A^{*}\left(\vec{r}_{w,y}\right) \exp\left(i \cdot \vec{\tilde{k}}_{0} \cdot \left(\vec{r}_{s,q} - \vec{r}_{w,y}\right)\right)$$

3 формули (6) видно, що СДСП складається з двох частин: перша – ДС когерентної частини випромінювання $\left|\dot{f}_0(\tilde{\vec{k}}_0)\right|^2 (1-\sigma_\phi^2)$, друга $\sigma_\phi^2 \cdot I(\tilde{\vec{k}}_0) -$ діаграми розсіювання (ДС частково когерентної частини).

ДС когерентної частини випромінювання являє собою неперекручену ДС по потужності, що зменшена в $(1-\sigma_{\phi}^2)$. Вигляд функції І $(\tilde{\vec{k}}_0)$ залежить від коефіцієнта кореляції К_{s,q;w,y}.

Перейдемо до конкретизації розглянутих співвідношень для СДСП АРЦ аналогічно (4) має вигляд

$$\begin{split} & \overline{\left|\dot{f}\left(\widetilde{\theta}_{0},\widetilde{\phi}_{0}\right)^{2}} = \sum_{s=-S_{1}}^{S_{1}} \sum_{q=-Q_{1}}^{Q_{1}} \sum_{w=-W_{1}}^{W_{1}} \sum_{y=-Y_{1}}^{Y_{1}} |\cos(\phi_{0}-s\cdot\delta\alpha)| \cdot |\cos(\phi_{0}-w\cdot\delta\alpha)| \cdot |\sin(\theta_{0})|^{2} \times \\ & \times |\cos(\widetilde{\phi}_{0}-s\cdot\delta\alpha)| \cdot |\cos(\widetilde{\phi}_{0}-w\cdot\delta\alpha)| \cdot |\sin(\widetilde{\theta}_{0})|^{2} \exp\left(i\cdot\overline{\sigma_{\phi}}\cdot\left(\phi(\overline{r}_{s,q})-\phi(\overline{r}_{w,y})\right)\right) \times \quad (7) \\ & \times \exp\left(i\cdot\frac{\omega_{0}}{c}\cdot\left[\left(\sin\theta_{0}\cos\phi_{0}-\sin\theta_{0}\cos\phi_{0}\right)(r_{q}\sin\beta_{q}\cos\alpha_{s}-r_{y}\sin\beta_{y}\cos\alpha_{w}\right)+\right] + \left(\sin\theta_{0}\sin\phi_{0}-\sin\theta_{0}\sin\phi_{0}\right)(r_{q}\sin\beta_{q}\sin\alpha_{s}-r_{y}\sin\beta_{y}\sin\alpha_{w}) \\ & + \left(\cos\theta_{0}-\cos\theta_{0}\right)(r_{q}\cdot\cos\beta_{q}-r_{y}\cdot\cos\beta_{y}) \end{split}\right) \end{split}$$

За умови малості радіусів кореляції введемо наступні допущення і обмеження:

 форма коефіцієнта кореляції не грає важливої ролі при умові його монотонного зменшення з відстанню [2];

 коефіцієнт кореляції розглядається роздільно в площинах двох кутів θ та φ (тобто розглядається зв'язок окремо між елементами решітки по лінійці та по кільцю), зв'язок між елементами решітки по діагоналі не розглядається.

Розглянемо випадок, коли помилки некорельовані. Тоді

$$\mathbf{K}_{\mathbf{s},\mathbf{q};\mathbf{w},\mathbf{y}} = \begin{cases} 1 & \mathbf{s} = \mathbf{w}, \, \mathbf{q} = \gamma, \\ 0 & \mathbf{s} \neq \mathbf{w}, \, \mathbf{q} \neq \gamma. \end{cases}$$
(8)

СДСП згідно формули (6) з урахуванням (5)

$$\left|\dot{f}\left(\widetilde{\theta}_{0},\widetilde{\varphi}_{0}\right)\right|^{2} = \left(1 - \sigma_{\phi}^{2}\right) \cdot \left|\dot{f}_{0}\left(\widetilde{\theta}_{0},\widetilde{\varphi}_{0}\right)\right|^{2} + \sigma_{\phi}^{2} \cdot I_{1}\left(\widetilde{\theta}_{0},\widetilde{\varphi}_{0}\right),\tag{9}$$

де $I_1(\widetilde{\theta}_0, \widetilde{\phi}_0)$ – діаграма розсіяння АРЦ при некорельованих помилках.

Розглянемо випадок *корельованих* помилок. Для спрощення розглянемо трикутну форму коефіцієнта кореляції в одній з площин θ або φ (рис. 2)

$$\begin{cases} \mathbf{K}_{\mathbf{s},\mathbf{w}} = 1 - \frac{\mathbf{e}}{\mathbf{E}}, \, \mathbf{e} = |\mathbf{s} - \mathbf{w}| < \mathbf{E}, \\ \mathbf{0}, \quad \mathbf{e} \geq \mathbf{E}; \end{cases}$$

де e(a) – радіус кореляції помилок (з фізичних міркувань доцільно вимірювати дискретно – в відстанях між елементами); E(A) – максимальне значення радіусу кореляції помилок.

Для прикладу розглянемо однаковий коефіцієнт кореляції обох площин $K_{s,w} = K_{q,y}$ (рис. 2).

Рис. 2. Коефіцієнт кореляції трикутної форми

Для корельованих помилок СДСП має вигляд

$$\overline{\left|\dot{f}\left(\tilde{\theta}_{0},\tilde{\varphi}_{0}\right)\right|^{2}} = \left(1 - \sigma_{\phi}^{2}\right) \cdot \left|\dot{f}_{0}\left(\tilde{\theta}_{0},\tilde{\varphi}_{0}\right)\right|^{2} + \sigma_{\phi}^{2} \cdot I\left(\tilde{\theta}_{0},\tilde{\varphi}_{0}\right),$$
(11)

де І $(\tilde{\theta}_0, \tilde{\phi}_0)$ – діаграма розсіяння АРЦ при корельованих помилках.

Були проведені розрахунки для циліндричної антенної решітки радіусом і висотою 1 м, з робочим сектором розміром 31 на 51 елемент, кількість елементів в кільці – $S_0 = 141$, кількість кілець – $Q_0 = 51$, коефіцієнт кореляції в обох площинах трикутної форми (рис. 2), E = A = 2.

Вид СДСП та ДР відображено на рис. 3, а, б. Величина $\sigma = 0,3$, що відповідає величині фазової помилки приблизно в 17°.

Дисперсія відведення напрямку головного максимуму циліндричної антенної решітки. Для розгляду відведення НГМ скористуємося методикою, що викладена в праці [5]. Для розгляду відходу НГМ в загальному вигляді необхідно розглянути ДСП при наявності фазових помилок згідно формули (2). Відхід НГМ від \vec{k}_0 станове $\vec{k}_{r\,0} = \vec{k}_0 + \Delta \vec{k}_0$. При цьому, градієнт від ДСП по \vec{k}_0 з помилкою буде спрямований по $\vec{k}_{r\,0}$:

$$\vec{\nabla} \left(\left| \dot{\mathbf{f}}_0 \left(\vec{\mathbf{k}}_0 \right)^2 \right) = 0.$$
⁽¹²⁾

Підставимо (2) в (12) та враховуючи формулу (3), отримаємо:

Рис. 3. Середні діаграми спрямованості по потужності циліндричної антенної решітки та діаграми розсіювання: а – площина ф; б – площина θ

$$\vec{\nabla} \exp\left(i\vec{k}\left(\vec{r}_{s,q}-\vec{r}_{w,y}\right)\right) = i\left(\vec{r}_{s,q}-\vec{r}_{w,y}\right) \exp\left(i\vec{k}\left(\vec{r}_{s,q}-\vec{r}_{w,y}\right)\right); \quad \vec{k}_{\Gamma 0} = \vec{k}_0 + \vec{k}_1\sigma_\phi + \vec{k}_2\sigma_\phi^2 + O\left(\sigma^3\right),$$

виділимо члени, що пропорційні $\sigma_{\phi}, \sigma_{\phi}^2, ...$ та прирівняємо нулю коефіцієнти при різних ступенях σ_{ϕ} . В результаті отримаємо систему рівнянь виду

$$\begin{cases} \sum_{s} \sum_{q} \sum_{w} \sum_{y} A(\vec{r}_{s,q}) A^{*}(\vec{r}_{w,y})(\vec{r}_{s,q} - \vec{r}_{w,y}) \exp(i\vec{k}_{0}(\vec{r}_{s,q} - \vec{r}_{w,y})) = 0; \\ \sum_{s} \sum_{q} \sum_{w} \sum_{y} A(\vec{r}_{s,q}) A^{*}(\vec{r}_{w,y})(\vec{r}_{s,q} - \vec{r}_{w,y}) \exp(i\vec{k}_{0}(\vec{r}_{s,q} - \vec{r}_{w,y})) \times (13) \\ (\phi(\vec{r}_{s,q}) - \phi(\vec{r}_{w,y}) + \vec{k}_{1}(\vec{r}_{s,q} - \vec{r}_{w,y})) = 0. \end{cases}$$

Перше рівняння системи (13) визначає $\vec{k}_0 - H\Gamma M$ при відсутності помилок; друге рівняння – дозволяє знайти $\Delta \vec{k}_0 = \vec{k}_1$. Відповідно, підвищуючи вимоги до точності визначення положення цілі з системи (13) можуть бути знайдені всі коефіцієнти розкладення.

Значення НГМ при відсутності помилок є відомим. Тому, доцільно проводити відлік кутових помилок від НГМ ($\vec{k}_0 = 0$) та вважати множник $\exp(i \cdot \vec{k}_0 \cdot (\vec{r}_{s,q} - \vec{r}_{w,y})) = \exp(0) = 1$ в АФР А $(\vec{r}_{s,q})$ А^{*} $(\vec{r}_{w,y})$. Вектор кутової помилки з другого рівняння системи (13) буде мати вигляд, що є аналогічний виразу для знаходження центру мас.

В праці [5] показано, що для його спрощення доцільно від четверних інтегралів (в нашому дискретному випадку – сум) перейти до подвійних. Для цього необхідно провести нормування координат таким чином, щоб центр координат співпадав з центром ваги при відсутності помилок. Аналогічний підхід, але для дискретного випадку АФР, може бути розглянутий і в нашому випадку.

Після перенесення початку с.к. в центр важкості дисперсія НГМ

$$\sigma_{\Delta \vec{k}'}^{2} = \sum_{s} \sum_{Q} \sum_{W} \sum_{Y} K_{s,q,W,y} \cdot A'(\vec{r}_{s,q}) \cdot A'(\vec{r}_{w,y}) \cdot \vec{r}_{s,q} \cdot \vec{r}_{w,y} / \left(\sum_{s} \sum_{Q} A'(\vec{r}_{s,q}) \cdot \vec{r}_{s,q} \cdot \vec{r}_{s,q} \right)^{2}, \quad (14)$$

де A'($\vec{r}_{s,q}$), $\vec{r}_{s,q}$ – значення AP та відстані до s, q-го елементу від центру системи координат, що розташований у центрі важкості; $K_{s,q;w,y} = \overline{\Delta \phi_{s,q} \cdot \Delta \phi_{w,y}}$ – коефіцієнт кореляції.

Як вже було сказано вище, коефіцієнт кореляції розглядається незалежно в двох площинах – по кільцю АРЦ та по лінійці.

В загальному вигляді дисперсію УНГМ необхідно розглядати в кар-

тинній площині уог (НГМ $\vec{k}_0 = 0$ співпадає з віссю ох). Переходячи до АРЦ, після нормування по σ_{ϕ}^2 отримаємо проекції σ_{Ak}^2 , на вісі у та z.

Або, скорочуючи та проводячи нормування по σ^2 отримуємо

$$\sigma_{y H}^{2}(E) = \frac{\sum_{v=0}^{E} \sum_{s=-S_{1}}^{S_{1}-v} \frac{1}{4} \left(1-\frac{v}{E}\right) \cdot \sin(2 \cdot s \cdot \delta \alpha) \cdot \sin(2 \cdot (s+v) \cdot \delta \alpha)}{\left[\sum_{s=-S_{1}}^{S_{1}} \sin^{2}(s \cdot \delta \alpha) \cdot |\cos(s \cdot \delta \alpha)|\right]^{2}}; \quad (15)$$

$$\sigma_{z H}^{2}(A) = \left(\sum_{v=0}^{A} \sum_{q=-Q_{1}}^{Q_{1}-v} \left(1-\frac{v}{A}\right) q(q+v) \delta h^{2}\right) / \left[\sum_{q=-Q_{1}}^{Q_{1}} q^{2} \delta h^{2}\right]^{2}. \quad (16)$$

Вираз для дисперсії УНГМ в площині y0z, проекція на вісь у, зображений на рис. 4. З нього видно, що максимальне значення дисперсії УНГМ при радіусі кореляції помилок АРЦ $\rho = 18$ ($\rho_{max} = 0,59$ L), що є більшим, ніж у лінійної ($\rho_{max} = 0,4$ L).

Рис. 4. Залежність дисперсії уведення напрямку головного максимуму від радіусу кореляції помилок: а – вісь у; б – вісь z

Висновки. 1. Розглянуто СДСП при малих радіусах кореляції. Показано, що вид СДСП в обох площинах θ та φ при некорельованих помилках не відрізняється від ДСП, за виключенням того, що відбувається зменшення рівня ДС в НГМ, деяке запливання нулів ДС та збільшення рівня бічних пелюсток. Аналогічна ситуація спостерігається і при корельованих помилках при невеликих радіусах кореляції. Водночас, навіть при значних фазових помилках (наприклад, при $\sigma = 0,3$, що відповідає $\Delta \psi \approx 17^{\circ}$) вищезазначені ефекти є незначними (величина НГМ зменшується на 0,5 дБ). Таким чином, фазові помилки з малим радіусом кореляції незначно впливають на СДСП;

2. Розглянуто дисперсію УНГМ АРЦ для малих фазових помилок. Залежність дисперсії УНГМ АРЦ від радіусу кореляції має екстремальний характер – при збільшенні радіусу кореляції помилок їх дисперсія збільшується, стає максимальною при певному рівні, а потім зменшується. Для АРЦ максимуму дисперсія набуває при значеннях $\rho_{max} \approx 0,59$ L в обох площинах, що є дещо більшим, ніж в лінійній решітці $\rho_{max} \approx 0,4$ L. Таким чином, найбільш небезпечними помилками в АРЦ є помилки з радіусом кореляції, що приблизно дорівнює половині винесеного розкриву решітки.

3. Всі статистичні характеристики, що отримані для АРЦ (СДСП та дисперсія УНГМ), якісно збігаються з результатами для лінійної антенної решітки, що наведені в [2]. Статистичні характеристики АРЦ займають проміжне положення між лінійною антенною решіткою та кільцевою.

ЛІТЕРАТУРА

- 1. Антенные решетки. [Электр. ресурс]. Режим доступа: www.lantannpf.ru.
- 2. Шифрин Я.С. Вопросы статистической теории антенн. М.: Сов. радио, 1970. – 384 с.
- 3. Справочник по антенной технике. В 5 т. Т. 1. / Под ред. Я.Н. Фельда, Е.Г. Зелкина. – М.: ИПРЖР, 1997. – 256 с.
- 4. Levagin G.A., Bondarenko I.M., Chepiga V.N. The statistical tests method application for calculating of the axisymmetric antennas characteristics // IV International Conference on Antenna Theory and Techniques, 9-12 September 2003, Sevastopol, Ukraine. Севастополь. 2003. С. 168-170.
- 5. Замятин В.И. К вопросу о статистических характеристиках поля апертурных антенн // Антенны. – М.: Связь. – 1974. – Вып. 19. – С. 46-56.

Надійшла 6.03.2006

Рецензент: доктор технічних наук, професор Л.Ф. Купченко,

Харківський університет Повітряних Сил ім. І. Кожедуба.