

ОБРОБКА РЕЗУЛЬТАТІВ ФІЗИЧНИХ ЕКСПЕРИМЕНТІВ

УДК 535.317.1

КОРРЕКЦИЯ ИСКАЖЕНИЙ ИЗОБРАЖЕНИЯ, ОБУСЛОВЛЕННЫХ РАВНОМЕРНЫМ СДВИГОМ

Е.Д. Прилепский (Харьковский университет Воздушных Сил им. И. Кожедуба)

Рассмотрена задача коррекции изображения, искаженного прямолинейным равномерным сдвигом. Построен корректирующий оператор и исследовано влияние шумов в измеренном смазанном изображении на возможности его коррекции.

изображение, искаженное сдвигом; корректирующий оператор

Постановка проблемы и анализ литературы. Среди задач обработки изображений особое место занимают задачи коррекции изображений, которые подвергались искажениям в результате неточного наведения оптической системы. Характерным примером таких искажений является смазывание, связанное с погрешностями отслеживания объекта. При малых величинах экспозиции приближение равномерного прямолинейного смазывания является весьма точным [1]. Постановка задачи линейного смазывания предполагает, что в течение регистрации изображения объект и оптическая система линейно и равномерно двигались друг относительно друга. В этом случае измерительной аппаратурой регистрируется искаженное изображение, связанное с неискаженным (исходным) изображением уравнением первого рода типа свертки [2]. Одна из трудностей коррекции искажений, вызванных прямолинейным равномерным сдвигом, методом инверсной фильтрации [3, 4] связана с тем, что корректирующий фильтр для такого искажения принимает бесконечные значения на дискретном множестве точек области пространственных частот. В случае коррекции это приводит к появлению ложных контуров в скорректированном изображении, которые обусловлены повышенным уровнем ошибок. В настоящее время существуют методы нахождения решения таких уравнений, устойчивые к ошибкам в исходных данных, называемые методами регуляризации. Однако параметр регуляризации, т.е. степень близости точного и регуляризицированного операторов задачи, задается априори и не связан непосредственно с исходной задачей.

Целью настоящей статьи является разработка условно устойчивого к некоррелированному шуму регуляризицированного метода коррекции изображений, искаженных смазом.

Основные соотношения и формулировки. Рассмотрим одномерную задачу, что снижает громоздкость выкладок, а обобщение на двумерный случай не вызывает принципиальных затруднений. При линейном смазывании регистрируемое изображение f(x) связано с исходным g(x) уравнением [1]

$$\int_{-\infty}^{\infty} S(x'-x) g(x) dx = f(x'), \quad x' \in D,$$
(1)

где S(x) – аппаратная функция системы, отражающая сглаживающие свойства системы; D – область определения искаженного изображения.

В случае прямолинейного равномерного смазывания аппаратная функция имеет вид [1]

$$S(x) = \begin{cases} 0; & x < 0, \, x > T, \\ T^{-1}; & 0 < x < T, \end{cases}$$

где величина смаза $T = \tau \upsilon$ ($\tau -$ время экспонирования, $\upsilon -$ скорость сканирования изображения).

В соответствии с методом работы [5] рассмотрим равномерно дискретизированное с интервалом Δx смазанное изображение $f(x_n') = f_n$:

$$\int S(x'_n - x) g(x) dx = f(x'_n) = f_n, \quad x'_n \in D,$$
(2)

и будем считать систему функций $S(x'_n - x) = S_n(x)$ линейно независимой. Тогда решение уравнений (2) имеет вид [5]

$$F(x) = F[(n+\gamma)\Delta x] = \sum_{n'} Q_{n-n'}(\gamma) f_{n'},$$
 (3)

$$Q_{1}(\gamma) = (2\pi)^{-1} \int_{\Omega} \left(\int_{\Omega} \left| H(\omega, \gamma') \right|^{2} d\gamma' \right)^{-1} H(\omega, \gamma) \exp(i\omega l \Delta x) d\omega, \tag{4}$$

n и γ – целая и дробная части x Δx^{-1} , т.е. $x=(n+\gamma)$ Δx ; Ω – область пространственных частот: $|\omega| \leq \pi \Delta x^{-1}$,

$$H(\omega, \gamma) = \sum_{n} S[(n - \gamma)\Delta x] \exp(-i\omega n\Delta x) -$$
 (5)

передаточная функция (ПФ) системы.

Дисперсия погрешности восстановления изображения, вызванная аддитивным шумом, для случая некоррелированной стационарной помехи равна

$$\sigma_{\rm F}^2 = K\sigma^2,\tag{6}$$

где коэффициент генерации шума при коррекции изображения

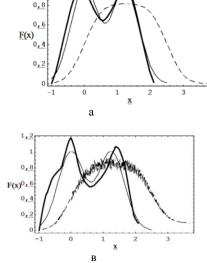
$$K = (2\pi\Delta x)^{-1} \int_{\Omega} \left(\int_{\Omega} |H(\omega, \gamma)|^2 d\gamma \right)^{-1} d\omega, \tag{7}$$

 σ^2 – дисперсия аддитивного шума в измеренном изображении f(x').

Анализ показывает, что коэффициент генерации шума K (7) минимален при величине смаза $T=(N+1/2)\Delta x$, где N — целая часть $T\Delta x^{-1}$. Для этой величины смаза получаем коэффициенты $Q_1(\gamma)$ (4) и K (7) в виде:

$$Q_{I}(\gamma) = 2(2N+1)\pi^{-1} \int_{0}^{\pi} \frac{\cos[(1+21)/2 + N]\sin[x/2]\sin[Nx/2]}{\{2 - \cos[Nx] - \cos[(1+N)x]\}} dx,$$
 (8)

$$K = 2(2N+1)^{2} (2\pi)^{-1} \int_{0}^{\pi} \frac{\sin[x/2]dx}{\{2 - \cos[Nx] - \cos[(1+N)x]\}},$$
 (9)


Из выражения (8) видно, что $Q_1(\gamma)$ — четная функция 1 относительно середины интервала смаза — (N+1)/2 и убывает с ростом 1. Это означает, что при коррекции смаза участвуют изображения, сдвинутые на расстояние нескольких смазов T. Из выражения (9) видно, что реально значение N должно быть не очень велико, так как иначе получается сверхразрешение (т.е. $\Delta x \ll T$) и большая помеха $K \sim N^2$ в скорректированном изображении.

На рис. 1 представлены примеры коррекции смазанного изображения при различном уровне шумов.

Исходное изображение — две гауссоиды, сдвинутые относительно друг друга. Величина смаза $T=1,25;\ N=4;\ \Delta x\cong 0,28$. На рис. а — коррекция без шума, на рис. б и в — коррекция с шумом 5% и 10% от амплитуды сигнала соответственно.

Приведенные результаты показывают, что задача коррекции смазанного изображения оператором (3) может быть достаточно уверенно решена в случае достаточно высокого уровня шума.

Выводы. В предлагаемом методе коррекции смазанного изображения интервал дискретизации является естественным параметром регуляризации задачи. Он непосредственно связан с видом исходного изображения, аппаратной функцией системы и уровнем шума в измеренном изображении. Ограничить нарастание шума в скорректированном изображении можно, если интервал дискретизации $\Delta x = T/(N+1/2)$, где T — величина смаза, N — целое число. Существенный для коррекции участок смазанного изображения

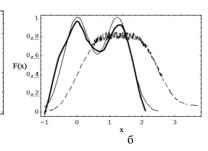


Рис. 1. Результаты моделирования коррекции изображения, искаженного смазом: а — без шума; б — с шумом 5%; в — с шумом 10% (линии изображений: тонкая — исходное, пунктирная — смазанное; жирная — скорректированное)

соответствует нескольким $N\Delta x$, так как при обработке амплитуда сдвинутых дискретных изображений быстро уменьшается.

Отметим, что предлагаемый метод коррекции изображения применим и при нечетком смазе. В реальных случаях N не очень велико (иначе возникает сверхразрешение и растет шум), поэтому возможно определение $Q_1(\gamma)$ и K по формулам (8) и (9).

ЛИТЕРАТУРА

- Тихонов А.Н., Гончарский А.В., Степанов В.В., Кочиков И.В. Некорректные задачи обработки изображений // ДАН СССР. – 1987. – Т. 294, № 4. – С. 832-837.
- 2. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986. 288 с.
- 3. Василенко Г.И., Тараторин А.М. Восстановление изображений. М.: Радио и связь, 1986.-304 с.
- 4. Обработка изображений и цифровая фильтрация. Пер. с англ. / Под ред. Т. Хаунга. М.: Наука, 1979. 318 с.
- 5. Прилепский Е.Д. Цифровое регуляризированное восстановление радиоизображений // Системи обробки інформації. Х.: XV ПС, 2005. Вип. 3 (43). С. 161-164.

Поступила 1.04.2006

Рецензент: доктор технических наук, профессор А.И. Стрелков Харьковский университет Воздушных Сил им. И. Кожедуба.