ИСПОЛЬЗОВАНИЕ АЛГОРИТМА ХАФФМАНА ДЛЯ ПОСТРОЕНИЯ ПСЕВДОМЕДИАННОГО ФИЛЬТРА

А.В. Шостак¹, Ю.И. Дорошенко²

 $(^{1}$ Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков, 2 Национальный технический университет «ХПИ», Харьков)

Приводится методика синтеза структуры взвешенного псевдомедианного фильтра с помощью алгоритма Хаффмана.

медианная фильтрация, взвешенная псевдомедианная фильтрация

Введение. Основными достоинствами медианной фильтрации при обработке изображений является [1]: сохранение при фильтрации перепадов яркости изображения; наилучшее подавление шумов, имеющих распределения с "тяжелыми хвостами" (например, биэкспоненциальное), и импульсных шумов. К недостаткам медианной фильтрации относят: худшее, чем при фильтрации с помощью скользящего среднего, подавление аддитивных шумов с равномерным и нормальным распределениями; при больших размерах апертуры фильтра искажаются мелкие детали изображения; повышенные требования к быстродействию фильтра при работе в режиме реального времени.

Несмотря на простоту некоторых алгоритмов оценки медианы [2], медианная фильтрация продолжает требовать значительных вычислительных ресурсов, что объясняется реальным режимом работы при обработке изображения, увеличением разрешения и глубины цвета, увеличением апертуры фильтра и использованием взвешенной медианной фильтрации. Поэтому поиск более эффективных алгоритмов оценки медианы является актуальной задачей. В данной статье рассматривается методика синтеза взвешенного псевдомедианного фильтра на основе структуры данных типа дерево с использованием алгоритма Хаффмана [3].

Основная часть. Пусть в апертуре фильтра имеется последовательность из п чисел (п нечетно) $A = (a_1, ..., a_n)$. Для хранения последовательности чисел A и оценки медианы будем использовать m-арное корневое дерево, в котором каждая вершина (кроме листьев) имеет не более m потомков [3]. Псевдомедианная фильтрация при различной арности дерева отличается быстродействием и точностью оценки медианы последовательности A.

Пусть h_i – глубина i-го листа в дереве, $h_{max} = max (h_1, ..., h_n)$ – максимальная глубина листьев в деревьях с п листьями. Вес i-го листа в дереве определим по формуле $w_i = 1 + \Delta h_i$, где $\Delta h_i = h_{max} - h_i$, i = 1, 2, ..., n. Упорядочим по убыванию веса листьев в дереве, т.е. $w_1 \ge w_2 \ge ... \ge w_n$.

Тогда $\overline{W}=(w_1,\,w_2,...,\,w_n)$ – упорядоченный вектор весов листьев дерева. Пусть также для выполнения взвешенной медианной фильтрации известен вектор весов в апертуре фильтра \overline{V}' , элементы которого также упорядочены по убыванию, т.е. $v_1 \geq v_2 \geq ... \geq v_n$. Пусть существует k различных m-арных корневых деревьев c n листьями.

Время взвешенной медианной фильтрации с фильтром \overline{V}' пропорционально сумме всех n элементов вектора, тогда как время псевдомедианной фильтрации с фильтром \overline{W}' пропорционально n.

Задача синтеза псевдомедианного фильтра апертуры п состоит в определении структуры m-арного корневого дерева, вектор весов которого \overline{W} наиболее близок к заданному вектору весов взвешенного фильтра \overline{V} .

Для синтеза \overline{W} по \overline{V} воспользуемся алгоритмом Хаффмана [3].

Пример. Пусть апертура фильтра $\overline{V}'=9$, вектор весов оптимального взвешенного медианного фильтра $\overline{V}'=(2\ 2\ 5\ 6\ 9\ 6\ 5\ 2\ 2)$ [4]. Упорядоченный по убыванию вектор весов имеет вид $\overline{V}=(9\ 6\ 6\ 5\ 5\ 2\ 2\ 2\ 2)$. На рис. 1 для \overline{V} представлены m-арные корневые деревья (m = 3, 5, 7) и соответствующие им псевдомедианные фильтры \overline{W} , построенные в соответствии с алгоритмом Хаффмана.

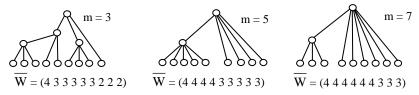


Рис. 1. М-арные деревья, построенные по алгоритму Хаффмана для \overline{V}

В табл. 1 приведены характеристики псевдомедианных фильтров \overline{W} , полученных в соответствии с алгоритмом Хаффмана для $\overline{V}'=(2\ 2\ 5\ 6\ 9\ 6\ 5\ 2\ 2).$

Характеристики псевдомедианных фильтров W

Таблица 1

№	фильтр $\overline{\overline{W}}$	m-арность дерева	Ошибка Е	Число совпадений фильтра \overline{W} с фильтром \overline{V}'
1.	4 3 3 3 3 3 2 2 2	3	52	5131
2.	4 4 4 4 3 3 3 3 3 3	5	42	7309
3.	4 4 4 4 4 4 3 3 3	7	42	6078

По алгоритму Хаффмана для взвешенного медианного фильтра $\overline{V}=$ = (2 2 5 6 9 6 5 2 2) деревом с оптимальным вектором длин путей при m = 3 является дерево с весами $\overline{W}'=$ (2 2 3 3 4 3 3 2 3) с алгоритмом поиска псевдомедианы $a^*=$ med(a(5), med(a(3), a(7), a(9)), med (a(4), a(6), med(a(1), a(2), a(8)))), при m = 5 – дерево с весами $\overline{W}'=$ (3 3 4 4 4 4 3 3 3) с алгоритмом поиска псевдомедианы $a^*=$ med(a(3), a(4), a(5), a(6), med (a(1), a(2), a(7), a(8), a(9))), при m = 7 – дерево с весами $\overline{W}'=$ (3 3 4 4 4 4 4 3 4) с алгоритмом поиска псевдомедианы $a^*=$ med(a(3), a(4), a(5), a(6), a(7), a(9), med(a(1), a(2), a(8))). В 4-м столбце таблицы приведена среднеквадратическая ошибка E, которая вычисляется как сумма разности квадратов отклонений w_i от v_i и оценивает степень близости псевдомедианного фильтра \overline{W}' к фильтру \overline{V}' .

Значение среднеквадратической ошибки E=42, полученное для фильтра $\overline{W}=(4\ 4\ 4\ 4\ 3\ 3\ 3\ 3)$, является минимальным среди всех m-арных корневых деревьев (m = 3, 5, 7, 9).

В столбце 5 приведено число совпадений значений оценок медиан псевдомедианного фильтра \overline{V}' с оценками взвешенного фильтра \overline{V}' (на входы фильтров подавались равномерно распределенные в интервале 0...255 числа и подсчитывалось число совпадений значений оценок на 10000 испытаний). Наиболее близким к взвешенному медианному фильтру \overline{V}' является псевдомедианный фильтр $\overline{W}'=(3\ 3\ 4\ 4\ 4\ 3\ 3\ 3)$.

Время взвешенной фильтрации с \overline{V} пропорционально сумме 9 элементов v_i , равной 39, тогда как время псевдомедианной фильтрации с \overline{W} пропорционально n=9.

Выводы. Таким образом, приведена методика синтеза структуры древовидного взвешенного псевдомедианного фильтра с использованием алгоритма Хаффмана. Исходными данными при синтезе фильтра являются размер апертуры фильтра \overline{V} , и арность дерева \overline{V} .

ЛИТЕРАТУРА

- 1. Быстрые алгоритмы в цифровой обработке изображений. / Под ред. Т.С. Хуанга. М.: Радио и связь, 1984. 224 с.
- 2. Шостак А.В., Дорошенко Ю.И. Выбор алгоритма поиска медианы при небольшой размерности задачи // Вісник НТУ «ХПІ». — Х.: НТУ «ХПІ», 2003. — Вип. 21. — С. 183-186.
- 3. Свами М., Тхуласираман К. Графы, сети и алгоритмы. М.: Мир, 1984. 454 с.
- 4. Yin L., Yang R., Neuvo Y. Weighted median filters: a tutorial // IEEE transactions on circuits and systems. 1996. Vol. 43, No. 3. P. 157-191.

Поступила 10.03.2006

Рецензент: доктор технических наук, профессор В.С. Харченко, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ».