ОЦЕНКА ПОГРЕШНОСТИ АППРОКСИМАЦИИ ИЗОБРАЖЕНИЯ В БАЗИСАХ КУСОЧНО-ПОСТОЯННЫХ И ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

А.А. Красноруцкий, А.В.Коломийцев, А.А.Олексин (Харьковский университет Воздушных Сил им. И.Кожедуба)

Установлена зависимость погрешности аппроксимации изображения, возникающей при ортогональном преобразовании в алгоритме компрессии изображений, от корреляционных характеристик аппроксимационных изображений.

погрешность, аппроксимация изображения, кусочно-постоянные и тригонометрические функции

Постановка проблемы. Возрастающая потребность в передаче изображений во времени, близком к реальному и, в тоже время, ограниченная пропускная способность существующих технических средств, выдвигает задачу модификации методов сжатия изображений с целью снижения времени доведения информации до пользователя.

Цель статьи. Установление зависимости погрешности аппроксимации изображения, возникающей при ортогональном преобразовании в алгоритме компрессии изображений от корреляционных характеристик аппроксимационных изображений.

Основной материал. Чтобы учесть степень сложности практического осуществления ортогонального преобразования, которая зависит от типа функций, введем понятие временной сложности аппроксимации изображения.

Временная сложность ТА алгоритма аппроксимации имеет вид

$$T_A = c(L+1)^r , \qquad (1)$$

где с – коэффициент аппроксимации; L – длина массива исходного изображения; r – степень сложности алгоритма.

Степень сложности алгоритма определяет количество элементарных операций, необходимых для вычисления N коэффициентов аппроксимирующего ряда по алгоритму ортогонального преобразования.

Проводилось сравнение временных сложностей алгоритма аппроксимации исходного изображения цветовой модели RGB, различных ортогональных преобразований, которые применяются в компрессии видеоданных.

При проведении исследований была задействована группа цветных изображений размерностью 128 × 128, которые можно разделить на три клас-

ca:

- сильнонасыщенные,

- средненасыщенные,

- слабонасыщенные.

Оценка степени насыщенности фрагментов изображений осуществлялась на основе коэффициента корреляции.

Значение коэффициента корреляции меньше 0,7 соответствует сильнонасыщенным изображениям; от 0,7 до 0,95 – средненасыщенным и более 0,95 – слабонасыщенным изображениям [1].

В основе ДКП лежат тригонометрические или "гладкие" функции. Выражение временной сложности для этого вида преобразования приобретает вид

$$T_d = c(L+1)^{r_d}$$

где T_d – временная сложность аппроксимации тригонометрическими функциями; с – коэффициент аппроксимации; L – длина массива исходного изображения; r_d – степень сложности алгоритма для вычисления N_d аппроксимирующего ряда.

В основе ДПХ и ДПУ лежат кусочно-постоянные функции. Выражение временной сложности для этого вида преобразования приобретает вид

$$T_{w} = c(L+1)^{r_{w}}$$
⁽³⁾

где T_w – временная сложность аппроксимации тригонометрическими функциями; с – коэффициент аппроксимации; L – длина массива исходного изображения; r_w – степень сложности алгоритма для вычисления N_w аппроксимирующего ряда.

При построении алгоритмов ортогональных преобразований изображения, необходимо учесть методическую погрешность аппроксимации δ, с целью сравнения базисов разложения гладких и кусочно-постоянных функций.

Методическая погрешность вызвана ошибкой аппроксимации исходного изображения конечным рядом из N базисных ортогональных функций $\phi_k(t)$, заданной на интервале [0, T), т.е. на интервале размерности строки изображения.

В общем виде величину средней энергии ошибки аппроксимации можно представить как

$$\left\langle \delta_{x}^{2} \right\rangle = \psi_{x}^{2} T - \sum_{i=0}^{N} \sum_{k=0}^{N} \left\langle a_{ik}^{2} \right\rangle \left\| \varphi_{ik} \right\|^{2}, \tag{4}$$

где Ψ_x^2 – дисперсия процесса аппроксимации; $\|\phi_{ik}\|$ – норма ортогональной функции $\phi_{ik}(t)$; a_{ik} – коэффициент спектрального разложения; T – интервал базисных функций $\phi_k(t)$.

Норма функций Хаара, Уолша и тригонометрических функций, за-

данных на интервале [0, T), равна \sqrt{T} .

При аппроксимации исходного статического изображения в тригонометрическом базисе, в частности ДКП, выражение для величины средней энергии ошибки $\left< \delta_d^2 \right>$ примет вид [2]

$$\left\langle \delta_{d}^{2} \right\rangle = \psi_{d}^{2}T - \frac{2}{T} \int_{0}^{T} (T - \tau) K(\tau) \frac{\cos(2N+1)\frac{\pi\tau}{T}}{\cos\frac{\pi\tau}{T}} d\tau, \qquad (5)$$

где К(т) – корреляционная функция изображения.

Величина средней энергии ошибки $\left< \delta_w^2 \right>$ при использовании в качестве базиса разложения систему ортогональных функций Уолша примет вид [2]

$$\left\langle \delta_{w}^{2} \right\rangle = \psi_{w}^{2} T - \frac{2}{T} \int_{0}^{T} (T - \tau) K(\tau) d\tau -$$

$$\frac{1}{T} \sum_{m=1}^{M} 2^{2m-1} \int_{0}^{\frac{T}{2^{m}}} (\frac{T}{2^{m}} - \tau) \left[2K(\tau) - K(\frac{T}{2^{m}} - \tau) - K(\frac{T}{2^{m}} + \tau) \right] d\tau,$$
(6)

где m = 1, 2, 3... – номер группы функций Уолша; n = 1, 2, 3,..., 2^{m-1} – номер функции Уолша внутри группы; М – число используемых групп функции Уолша.

Корреляционная функция изображения имеет вид

$$K(\tau) = e^{-\alpha |\tau|}, \tag{7}$$

где α – эквивалент ширины энергетического спектра случайного процесса модулируемой строки изображения; τ – условная размерность расстояния между двумя физически соседними пикселями, которые реагируют на различные значения интенсивности.

Усеченные ряды по функциям Хаара и Уолша, содержащие одинаковое число групп М, дают одинаковую среднюю энергию ошибки аппроксимации [2].

При фиксированном значении τ коэффициент корреляции исходного изображения определяет ширина энергетического спектра α. С ростом ширины энергетического спектра коэффициент корреляции изображения уменьшается, то есть изображение становится более насыщенным.

На рис. 1 представлена зависимость методической ошибки δ от ширины энергетического спектра α аппроксимируемого изображения, при фиксируемых значениях Т и N для кусочно-постоянных функций (пунктир) и тригонометрических функций (сплошная линия).

При фиксируемом числе слагаемых N в базисе аппроксимирующих

функций и при фиксируемом размере строки изображения T с ростом ширины энергетического спектра α возрастает величина методической ошибки аппроксимации строки изображения в базисе кусочнопостоянных функций больше чем в тригонометрическом базисе. Таким образом, ошибка δ для базиса кусочно-постоянных функций больше чем тригонометрического практически во всем диапазоне.

При фиксированных значениях ширины энергетического спектра α и размерности строки изображения T, установлена зависи-

Рис. 1. График зависимости методической ошибки аппроксимации от ширины энергетического спектра для T = const и N = const

мость ошибки δ от количества слагаемых N в базисе аппроксимирующих функций для исходных изображений: сильнонасыщенных (рис. 2, а), средненасыщенных (рис. 2, б), и слабонасыщенных (рис. 2, в).

б – средненасыщенные изображения $\alpha = 0.6; K(\tau) = 0.835$

При фиксированных значениях ширины энергетического спектра α и количества слагаемых N в базисе аппроксимирующих функций, установлена зависимость ошибки δ от размерности строки изображения T, для исходных изображений: сильнонасыщенных (рис. 3, а), средненасыщенных (рис. 3, б), и слабонасыщенных (рис. 3, в).

Рис. 3. График зависимости методической ошибки аппроксимации от размерности строки изображения Т для N = const и α = const

Трудоемкость алгоритмов вычисления ДКП – 2Nlog₂N операций сложений/вычитаний и 2Nlog₂N операций умножений. Трудоемкость алгоритмов вычисления ДПХ и ДПУ не хуже 2Nlog₂N операций сложений/вычитаний [3, 4].

На рис. 4 приведен график зависимости ошибки аппроксимации от числа элементарных операций S, необходимых для вычисления N коэффициентов аппроксимирующего ряда.

Из графика следует, что количество операций, соответственно и время вычисления необходимое для достижения фиксируемой точности аппроксимации исходного изображения значительно меньше у функций Уолша чем у тригонометрических функций только для сильнонасыщенных изображений.

Рис. 4. График зависимости методической ошибки аппроксимации от числа элементарных операций S, необходимых для вычисления N коэффициентов аппроксимирующего ряда для T = const и α = const

Выводы. Для специальных классов изображений, которые не обладают определенной гладкостью, применение базиса Уолша эффективнее базиса тригонометрических функций, если в качестве критерия использовать сложность машинной реализации, а, следовательно, и простоту при практической реализации, которая выражается в уменьшении временной сложности аппроксимации.

ЛИТЕРАТУРА

- 1. Королева Н.А., Красноруцкий А.А. Кодирование трансформант преобразований Уолша. // Збірник наук. праць ХУПС. – Х.: ХУ ПС, 2005. – Вип. 1(1). – С. 101-103.
- 2. Тисленко Г.Л., Черницер А.В. Погрешность представления стационарных случайных процессов в базисах функций Хаара, Уолша и тригонометрических функций // Радиотехника. 1974. Т. 29, № 10. С. 12-17.
- 3. Прэтт У. Цифровая обработка изображений: Пер. с англ. М.: Мир, 1982. – Кн. 1. – 312 с; Кн. 2. – 480 с.
- 4. Ахмед Н., Рао К. Ортогональные преобразования при обработке цифровых сигналов: Пер. с англ. М.: Связь, 1980. 248 с.

Поступила 12.04.2006

Рецензент: доктор технических наук, профессор Ю.В. Стасев,

Харьковский университет Воздушных Сил им. И.Кожедуба.