УДК 614.89:537.868

И.А. Черепнёв

Харьковский национальный технический университет сельского хозяйства

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ КЛЕТОК И ИХ ВЗАИМОДЕЙСТВИЕ

В работе рассмотрены две взаимосвязанные клетки, динамика которых характеризуется наличием аттракторов в фазовом пространстве.

электромагнитное излучение, взаимодействие клеток, аттрактор, фазовое пространство

Введение

Задача взаимодействия двух сложных систем имеет много аспектов: физический, кибернетичесий, биологический и т.д.

В данной работе рассматривается вопрос о взаимодействии двух клеток, каждая из которых является нелинейной динамической системой. Обычно предполагается, что взаимодействие клеток осуществляется через перекрестное влияние потенциалов каждой из клеток. В настоящей работе указывается на то, что быстрое изменение потенциала клеточной мембраны должно сопровождаться излучением электромагнитных волн. Очевидно, что это излучение позволяет осуществлять взаимодействие клеток на достаточно большом расстоянии.

В работе вычислено излучение клеток, спектры излучения и проанализировано взаимодействие между ними через это излучение.

Основные уравнения эволюции потенциалов взаимодействующих клеток

Рассмотрим две взаимодействующие между собой клетки. Для описания динамики мембранного потенциала клеток отражающей тонкие элементы взаимодействия используется система уравнений Хиндемарша-Розе. Мембрана клетки моделируется емкостью, а цитоплазма сопротивлением, проводимость мембраны моделируется, зависящим от напряжения резистором [1]. В этой модели использовано медленное изменение концентраций ионов кальция и калия. Уравнения, описывающие эту модель, имеют вид [2]:

$$C_{c1} \frac{d\phi_{1}(t)}{dt} = y_{1}(t) + a_{1}\phi_{1}(t)^{2} - b_{1}\phi_{1}(t)^{3} - -z_{1}(t) + I_{1} + \frac{\Delta I_{1}}{Z_{0}}E_{2}(t);$$
(1)

$$\frac{dy_{1}(t)}{dt} = c_{1} - d_{1}\phi_{1}(t)^{2} - y_{1}(t); \qquad (2)$$

$$\frac{dz_{1}(t)}{dt} = v_{1}\left(s_{1}\left(\phi_{1}(t) - \phi_{10}\right) - z_{1}(t)\right); \quad (3)$$

$$C_{c2} \frac{d\phi_{2}(t)}{dt} = y_{2}(t) + a_{2}\phi_{2}(t)^{2} - b_{2}\phi_{2}(t)^{3} - b_{2}\phi_$$

 $-z_{2}(t)+I_{2}+\frac{\Delta I_{2}}{Z_{0}}E_{1}(t); \qquad (4)$

$$\frac{dy_{2}(t)}{dt} = c_{2} - d_{2}\phi_{2}(t)^{2} - y_{2}(t); \qquad (5)$$

$$\frac{\mathrm{d}z_{2}\left(t\right)}{\mathrm{d}t} = v_{2}\left(s_{2}\left(\varphi_{2}\left(t\right) - \varphi_{20}\right) - z_{2}\left(t\right)\right). \quad (6)$$

В этой системе $\varphi_i(t)$ – мембранный потенциал і-й клетки; $y_i(t)$ – величина, характеризующая восстановление концентраций быстрых ионов (обычно, Na⁺и K⁺); $z_i(t)$ – медленная переменная, определяемая концентрацией ионов Ca⁺⁺; $E_i(t)$ – электромагнитное поле излучения і-й клетки; Δl_i –характерный размер соответствующей клетки; C_{ci} – емкость клеточной мембраны, Z_0 – импеданс окружающей среды.

В отсутствии внешнего поля, при значениях параметров $a_i = 3$; $b_i = 5$; $I_i = 3,281$; $\phi_{i0} = -1,6$; $s_i = 4$; $r_i = 0,0021$ эта система генерирует хаотические колебания, подобные хаотическим колебаниям живого нейрона. При отсутствии взаимодействия между клетками эволюция мембранных потенциалов клетки 1 и клетки 2 достаточно регулярны и показаны соответственно на рис. 1 и 2.

Быстрые колебания потенциала мембраны и натриевых токов $i_{Na}(t)$ приводят к возбуждению электромагнитных колебаний, напряженность поля которых можно вычислить из соотношения:

$$E_{i}(t) \approx \frac{Z_{0}}{4\pi c} \frac{1}{r} \frac{d}{dt} \left[i_{Na} \left(t - \frac{r}{c} \right) \right] \Delta L_{i} , \qquad (7)$$

где г – расстояние, на котором вычисляется поле і-й клетки. Типичный спектр излучения невзаимодействующих клеток показан на рис. 3.

Из рисунков ясно видно изменение режимов при учете взаимодействия клеток через поле, приведшее к существенной стохастизации эволюции потенциалов клеточных мембран.

Излучение клеток приводит к их взаимодействию и на относительно небольших расстояниях это взаимодействие довольно значительно и приводит к изменению режимов эволюции клеточных потенциалов.

На рис. 4, 5. показаны траектории динамических систем, представляющих клетки 1 и 2.

На рис. 6, 7 показаны спектры мощности излучения клеток.

Выводы

Результаты численных экспериментов, таким образом, указывают на то, что излучение клеток могут служить средством обмена информации между клетками и приводить к существенному изменению их состояний.

Список литературы

1. Wang X.J., Rinzel J. In: The Handbook of Brain Theory and Neural Networks / Ed. M.A. Arbib. – Cambridge: MIT Press, 1995. –686 p.

2. Hindmarsh J.L., Rose R.M. Membrane of cage // Proc. R.Soc.Lond., 1984. – V. B221. – P. 87.

Поступила в редакцию 24.07.2006

Рецензент: д-р техн. наук, проф. А.Д. Черенков, Харьковский национальный технический университет сельского хозяйства, Харьков.