УДК 614.001.89

Е.Т. Володарский¹, И.А. Харченко², В.И. Згуря², М.Е. Молочков²

 1 Национальный технический университет Украины «Киевский политехнический институт» 2 Укр
НИИПБ МЧС Украины, Киев

КОРРЕКТНОСТЬ ПРИМЕНЕНИЯ КРИТЕРИЯ ГРАББСА ПРИ АНАЛИЗЕ РЕЗУЛЬТАТОВ ИСПЫТАНИЯ С ТРЕМЯ ЭЛЕМЕНТАМИ

Проанализирована чувствительность критерия Смирнова-Граббса при выявлении выбросов для объема выборки в три элемента. Установлено, что чувствительность в первую очередь зависит от абсолютного значения разности между элементами выборки, которые не относятся к выбросу. По результатам моделирующего эксперимента найдены соотношения, позволяющие определить критическое значение, при котором критерий выявляет выброс.

критерий Граббса, выбросы, квазивыбросы, испытания

Введение

Среди требований ДСТУ ISO/IEC 17025 [1, 2] к испытательным лабораториям, которые намереваются показать, что у них функционирует система качества и они технически компетентные, есть требование использования статистических методов анализа данных испытания (п. 5.4.1 [1, 2]), в том числе и при проведении сравнительных испытаний.

Лаборатория, которая принимает участие в межлабораторных сравнительных испытаниях в соответствии с Руководством ISO/IEC 43-1:1997 [3], должна иметь методику выявления выбросов. Ранее (15 – 20 лет назад) с этой целью применялся стандарт СЭВ 545-77 [4], в котором были изложены критерии оценки анормальности результатов наблюдений. В этом стандарте использовался критерий Н.В. Смирнова и отмечалось, что в литературе часто неправомерно критерий приписывают Ф.Е. Груббсу (теперь переводится Граббс). Отмечается, что впервые правильное решение задачи относительно оценки анормальности результатов наблюдений был дан Н.В. Смирновым в 1941 г. В 1950 г. Ф.Е. Граббс повторил эти результаты Н.В. Смирнова без ссылки на него.

В настоящее время для выявления выбросов лаборатории рекомендуется пользоваться положениями ДСТУ ГОСТ ISO 5725-2:2005 [5], в котором для выявления выбросов также предлагается использовать критерий Граббса.

Критерий Граббса предусматривает, в первую очередь, проверку одного наибольшего (наименьшего) из значений результатов испытаний на наличие выбросов и квазивыбросов.

Статистика Граббса рассчитывается исходя из выражений:

$$G_{j\text{max}} = \frac{y_{j\text{max}} - \overline{y}_{j}}{S_{j}}; \quad G_{j\text{min}} = \frac{\overline{y}_{j} - y_{j\text{min}}}{S_{j}}, \quad (1)$$

где \overline{y}_j и S_j – среднее значение и среднеквадратическое отклонение соответственно, рассчитанные для j-й лаборатории по результатам испытаний.

Характерной особенностью испытаний в сфере пожарной безопасности является применение разрушающих методов контроля и проведения испытаний на 1-3 образцах.

Основной материал

Рассмотрим особенности применения критерия Граббса для определения выбросов и квазивыбросов в случае, когда имеем три результата испытаний — наименьший объем выборки, для которого можно использовать критерий Граббса. Будем исходить из оценки метода определения группы трудногорючих и горючих твердых веществ и материалов согласно п. 4.3 ГОСТ 12.1.044-89 [6]. Этот метод выбран из следующих соображений:

- 1. Метод реализован в более чем 20 лабораториях Украины, что позволяет сопоставить результаты, полученные в разных лабораториях.
 - 2. Для испытаний, используется три образца.

Экспериментальное исследование образцов начинается при температуре газообразных продуктов горения (200 ± 5) °C. Если температура газообразных продуктов горения не достигает 260 °C, материал является трудногорючим, если же температура превышает 260 °C – материал относят к горючим.

Другие критерии этого метода в данной работе не рассматриваются.

Практика применения критерия Граббса для выявления выбросов и квазивыбросов по трем результатами испытаний показала, что выводы по данному критерию и выводы экспертов могут существенно отличаться. Так для одной совокупности имеющихся данных критерий "не реагировал" на превышение температуры по отношению к начальной в сотни градусов, а в других случаях при незначительных превышениях температуры "реагировал" как на выбросы.

Принимая во внимание, что по абсолютным значениям температуры, полученным во время испытаний, материал относят к соответствующей группе горючести, важно, чтобы решения, которые принимаются по критерию Граббса, отвечали физическому смыслу и не приводили к ошибочной классификации. Неопределенность полученных решений дополнительно связана с тем, что критические значения $G_{\rm kp}$ для 1 %-го и 5 %-го уровня статистической значимости одинаковые и равняются 1,155 [5].

Для анализа механизма выявления выбросов по критерию Граббса представим выражение (1) следующим образом:

$$T_{kp}^{max} = T_{cp} + G \cdot S ; \qquad (2)$$

$$T_{\kappa p}^{\min} = T_{cp} - G \cdot S , \qquad (3)$$

где $T_{\kappa p}^{max}$ и $T_{\kappa p}^{min}$ – критическое значение температуры, по отношению к которым результат признается выбросом или квазивыбросом; T_{cp} – значение средней температуры выборки; S – оценка среднеквадратического отклонения температуры выборки; G – критическое значение статистики Граббса.

Значения T_{cp} и в особенности S зависят от "комбинации" имеющихся текущих значений в выборке. В дальнейшем, исходя из цели исследования, будем анализировать наличие выбросов или квазивыбросов для наибольшего выборочного значения имеющихся результатов измерения температуры для n=3. При этом критическое значение температуры согласно c (2) будет определяться как

$$T_{KD} = T_{CD} + 1{,}155 \cdot S$$
. (4)

Для анализа чувствительности критерия Граббса при 3-х результатах испытаний был проведен моделирующий эксперимент. В качестве исходных данных результатом испытаний были выбраны значения температур: $T_1 = 252~{\rm ^{\circ}C}$; $T_2 = 254~{\rm ^{\circ}C}$; $T_3 = 253~{\rm ^{\circ}C}$. Для этих данных $G_{max} = 1,0$, что меньше $G_{kp} = 1,155~-$ согласно критерию Граббса результаты испытаний не содержат выбросов и квазивыбросов.

При проведении моделирующего эксперимента были зафиксированы значения T_1 и T_3 , а значение

 T_2 увеличивалось с шагом в 1°C до тех пор, пока рассчитанное текущее значение коэффициента Граббса G_{max} не достигнет G_{kp} . Было установлено, что при фиксированных значениях $T_1=252\,^{\circ}\mathrm{C}$; $T_3=253\,^{\circ}\mathrm{C}$ рассчитанное текущее значение G_{max} достигнет $G_{kp}=1{,}155\,$ при $\widetilde{T}_2=299\,^{\circ}\mathrm{C}$. Обозначим наименьшее значение \widetilde{T}_2 , которое по критерию Граббса является выбросом — T_{kp} .

Для оценки чувствительности введем показатель, который характеризует размах значений в выборке — $\Delta_{\rm kp}$, как разность значений $T_{\rm kp}$ и наименьшего значения в выборке $T_{\rm l}$:

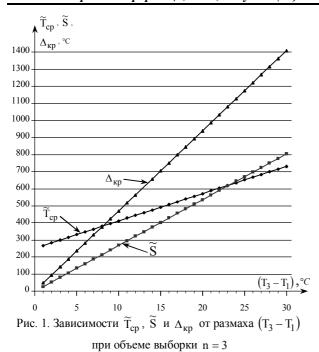
$$\Delta_{KD} = T_{KD} - T_1. \tag{5}$$

В результате проведения моделирующего эксперимента было обнаружено, что $\Delta_{\kappa p.1} = T_{\kappa p.1} - T_1 = 47 \, ^{\circ}\text{C} \quad (\text{здесь индекс 1 показыва- et, что разность между зафиксированными значениями <math>T_1$ и T_3 составляет 1°C).

Последующее исследование проводилось при условии неизменного фиксированного значения $T_1=252~^{\circ}\mathrm{C}$ и увеличении при каждом i-м моделирующем эксперименте разности между T_3 и T_1 . Так, например, при i=3: $R_3=T_{3.3}-T_1=3~^{\circ}\mathrm{C}$, т.е. $T_3=253~^{\circ}\mathrm{C}$. Как в выше рассмотренном случае, значение T_2 увеличивалось до тех пор, пока рассчитанное текущее значение G_{max} не достигало $G_{\kappa p}=1,\!155$. Полученные результаты представлены на рис. 1. Здесь $\widetilde{T}_{cp.i}$ и \widetilde{S}_i — среднее значение и оценка среднеквадратического отклонения соответственно для i-го моделирующего эксперимента, вычисленные при $\widetilde{T}_2=T_{\kappa p.i}$ и выполнении выражения:

$$G_{\text{max.i}} = \frac{T_{\text{kp.i}} - \widetilde{T}_{\text{cp.i}}}{\widetilde{S}_{i}} = G_{\text{kp}}.$$
 (6)

Как следует из зависимостей, приведенных на рис. 1, можно сделать вывод, что введенный параметр $\Delta_{\rm kp}$ является наиболее чувствительным к наличию выбросов и квазивыбросов. Более того, анализ данных, полученных при проведении моделирующего эксперимента для различных значений $R_i = \left(T_{3.i} - T_1\right)$ позволил выявить константу


$$K_{\Delta_{KP}} = \frac{\Delta_{KP.i}}{R_i} = 47,$$

на основании которой получены соотношения:

$$T_{\kappa p.i} = T_1 + 47 \cdot R_i;$$

$$\widetilde{T}_{cp,i} = T_1 + 16 \cdot R_i$$
,

геометрическая интерпретация которых представлена на рис. 2.

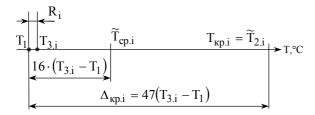


Рис. 2. Соотношение между выборочными значениями при выявлении выбросов и квазивыбросов

Как следует из приведенных зависимостей и рис. 2, чувствительность критерия Граббса зависит от абсолютной разницы $R_i = T_{3.i} - T_1$ между значениями элементов выборки, которые не являются выбросами. Чем больше разница R_i при фиксированном T_1 , тем больше критическое значение максимального элемента выборки, при котором критерий Граббса обнаружит выброс. Кроме того существует закономерность, которая связывает разницу между крайними элементами выборки T_1 и $T_2 = T_{\text{кр.i}}$ и разницу между соседними элементами T_1 и $T_{3.i}$; $\Delta_{\text{кр.i}} = 47 \cdot R_i$ или $T_{\text{kp}} - T_1 = 47 \cdot (T_{3.i} - T_1)$.

Например, при $T_{3.i}-T_1=1^{\circ}C$ (i=1) разница между $T_{\text{кр.}i}=299~^{\circ}C$ и $T_1=252~^{\circ}C$ составляет $\Delta_{\text{кр.}i}=1\cdot47~^{\circ}C$. При i=5 $T_{3.5}-T_1=5~^{\circ}C$, а критическое значение, при котором критерий Граббса определяет выбросы, будет $\widetilde{T}_2=\widetilde{T}_{\text{кр.}i}=487~^{\circ}C$. Как следует из приведенного примера, исходя из физи-

ческого смысла выбросы возможно было бы обнаружить и раньше, а критерий Граббса этого не позволяет. Второй вывод вытекает для случая, когда значения двух элементов выборки равны, то есть $T_1=T_3$. Тогда имеем, что $R_0=T_{3.0}-T_1=0\,^{\circ}\mathrm{C}$ и критерий Граббса любое третье значение T_2 , которое будет отличаться (в рассматриваемом случае больше) от $T_1=T_3$, будет принимать за выбросы. Такие случаи часто встречаются на практике, например при проведении испытаний в области пожарной безопасности, и решаются при окончательном принятии решения путем привлечения экспертов, которые могут оценить реальную физическую ситуацию.

Выводы

Таким образом, проведенный моделирующий эксперимент показал ограниченность применения критерия Граббса для выявления выбросов и квазивыбросов при проведении испытаний, когда объем выборки n=3. С одной стороны чувствительность критерия Граббса недостаточная, а значит могут быть получены такие значения, которые с точки зрения физического смысла являются выбросами, а критерий Граббса их "не чувствует". С другой стороны, при двух одинаковых значениях из трех третье значение в выборке всегда по критерию Граббса будет признаваться выбросом.

Список литературы

- 1. ДСТУ ISO/IEC 17025-2001 Общие требования к компетентности испытательных и калибровочных лабораторий.
- 2. ДСТУ ISO/IEC 17025-2006 Общие требования к компетентности испытательных и калибровочных лабораторий.
- 3. Руководство ISO/IEC 43-1:1997 Проверка лаборатории на качество проведения испытаний посредством межлабораторных сличений. Часть 1. Разработка и реализация программ проверки на качество проведения испытаний.
- 4. CT СЭВ 545-77 Прикладная статистика. Правила оценки анормальности результатов наблюдений.
- 5. ДСТУ ГОСТ ISO 5725-2:2005 Точность (правильность и прецизионность) методов и результатов измерения. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерения (ГОСТ ИСО 5725-2-2003, IDT).
- 6. ГОСТ 12.1.044-89 ССБТ Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

Поступила в редколлегию 15.05.2007

Рецензент: д-р техн. наук, проф. И.В. Руженцев, Харьковский национальный университет радиоэлектроники, Харьков.